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MATHEMATICAL MODELLING OF MORTALITY DATA USING

PROBABILITY DISTRIBUTIONS

ANDREOPOULOS PANAGIOTIS, BERSIMIS. G. FRAGKISKOS, TRAGAKI ALEXANDRA

Abstract. A number of different distributions describing age-related mortal-
ity have been proposed. The most common ones, Gompertz and Gompertz

- Makeham distributions have received wide acceptance and describe fairly

well mortality data over a period of 60-70 years, but generally do not give the
desired results for old and/or young ages. This paper proposes a new mathe-

matical model, combining the above distributions with Beta distribution. Beta

distribution was chosen for its flexibility on age-specific mortality character-
istics. The proposed model is evaluated for its goodness of fit and showed

sufficient predictive ability for different population sub-groups. The scope of

this work is to create sufficient mortality models that could also be applied in
populations other than the Greek, based on appropriate parameter detection

(e.g. Maximum Likelihood) and to come up with a methodology comparison.

Our analysis relied on 2011 disease data tabulated by age (5-year groups) and
sex provided by the Greek Statistical Authority (ELSTAT) as part of the natu-

ral movement of the population of Greece. Deaths are decomposed by different
causes, endogenous or external causes of death. According to our preliminary

findings, the proposed mortality model (ANBE) shows satisfactory results on

appropriate evaluation criteria (AIC, BIC). This paper presents some of the
statistical properties of ANBE model.

1. Introduction

Demography is a data driven field of scientific research: data help identifying
spatial and temporal trends and fluctuations and is the key-element on which opti-
mal policy decisions are based. A lot of work has been carried out to construct and
optimize, among others, probabilistic mortality models that describe a population’s
mortality. The aforementioned models are constructed by using various physical
or demographic quantities such as births, deaths, aging and marital status (single,
married, widow etc), as independent variables. In this work calculated mortality
rates, which are available in tabular form called mortality tables, were used. A
mortality table is a series of (annually, monthly, weekly, etc) death probabilities
qx, qx+1, ..., qω+1 from a minimum age until a maximum theoretical biological age
threshold, where ω symbolize the marginal age i.e. the age beyond which no indi-
vidual can’t survive theoretically and qx symbolize the probability, of an individual
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aged x, to die in time interval [x, x+1) for x=a, a+1,, ω-1. The probability of an
aged x individual to die in this interval is given by relation 1.1:

qx =
dx
lx

(1.1)

where dx symbolizes the number of deaths in the interval [x,x+1), and is given by
the difference of relation 1.2:

dx = lx − lx+1 (1.2)

where lx symbolizes the multitude of individuals that are alive in the age of x.
Mortality tables are used in everyday life for analyzing populations’ mortality and
estimating the corresponding mortality rate. In Mortality tables certain functions
(Johnson and Johnson, 1980) are contained such as lx, dx, qx, px, x = 1, 2, , ω, where
px represents the conditional probability of survival meaning the probability of an
individual of age x not to die in the interval [x,x+1). By expanding the previous
definition, he probability an individual of age x to survive n additional years, is
given by relation 1.3:

Px =
lx+n

lx
(1.3)

In addition, function ex symbolizes the number of years that an individual of age
x is expected to live and is given by relation 1.4:

ex =
Tx

lx
(1.4)

2. Focus on target

In literature, there are (Benjamin, P. and Polland, J.H., 1980) mathematical
models of mortality that use special distributions (Gompertz, Makeham), suitable
for describing demographical data. But all so far fail to include in their analy-
sis at the same time specific fields such as age, accidents and diseases. But, the
combination of the previous distributions with the Beta distribution, which takes
appropriate customized form, constructs mathematical models with better fit and
also sufficient predictive ability for different data sets (data deaths or diseases).

There are two basic methods for constructing a mortality model that attempts
to represent and assess the real mortality pattern:

a) In the first method, a mortality table is constructed and a mortality time
series is produced from its elements.

b) In the second method, the mortality pattern is described by a function based
on some known probabilistic distributions.

In the case of parametric methods, the adaptation of a mathematical function
in the initial estimations of mortality rates or the mortality intensity is desirable,
in order to express the relation that exists between them. The normalization is
conducted either by adjusting a function in all ages or more functions to data in-
crementally. Non-parametric methods are applied to mortality tables by combining
data in different values of age x. The main objective of these methods is to smooth
the values of mortality tables by using mortality models, generated by methods
such as generalized linear models or splines methods.
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3. Mortality model selection

One of the main objectives of Demography is the description of the mechanisms
that describe mortality. The mortality models, as it was mentioned before, contain
various demographic measures such as the mortality intensity, symbolized as μx

and the mortality probability, symbolized as qx. According to Hatzopoulos [10], a
satisfying model should have the right theoretical background in order to give better
interpretations. In addition, a model should give the best results with the minimum
number of parameters. As an evolution of the above laws, a mortality law was
formulated by Gompertz, about one hundred years later, by using the corresponding
probability distribution. The probability density function of Gompertz distribution
with parameters a and b is given in relation 3.1:

f(x) = aebxe−
a
b (e

bx−1), x ≥ 0, a, b > 0 (3.1)

According to this law, mortality intensity μx grows exponentially according to
the type of relation: 3.2:

μx = aebx (3.2)

where a and eb are positive parameters and eb takes values close to 1.09 (Lytrokapi
[13]). The logarithm of the mortality intensity is the same as the log link general-
ized linear models used (Hatzopoulos, 1997). This law often describes satisfactorily
enough the empirical data of population mortality, at least in the interval of 60-70
years, but generally does not give the desired results in young ages. The basic
disadvantage of Gompertz law is that only takes into consideration the systematic
”physiologic deterioration” and ignores the effect of accidental element. The ini-
tial mortality models always aim to adapt data better to reality, leading to the
proposition of the ”1st law of Makeham, which is give in relation 3.3:

μx = aebx + λ (3.3)

where λ is a constant parameter that expresses the randomness of deaths due to
deteriorating health or accidents. The introduction of the third parameter λ renders
the Makeham law more flexible in the depiction of empirical data. Then, another
law was found, known as the ”2nd law of Makeham” or ”Generalized Makeham
law, which is given by relation: 3.4:

μx = aebx + hx+ λ (3.4)

where h is an unknown parameter. A lot of mortality models exist in the Demog-
raphy literature and investigators select the appropriate model that adopts better
real data. In addition, a combination of already known distributions (Exponen-
tial, Gamma, Beta distribution, etc.) with similar mortality laws is possible to be
carried out.

4. Building the mortality model

The mortality rates were built, by using data emanating from the Greek Sta-
tistical Service related to the Greek mortality data from year 2011. Deaths are
decomposed by different causes, endogenous or external causes of death. The real
mortality pattern is described satisfactorily by the models that were mentioned
before. Then, the models are adjusted to the original data, in order to estimate
the unknown parameters by using the maximum likelihood method and the least
squares method.
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4.1. Maximum likelihood. Let the number of deaths at age x, to follow the bino-
mial distribution with parameters lx and qx, where lx is the number of individuals
in danger in the age of x and qx is the respective actual mortality rate, assuming
that deaths in various age groups are independent to each other. The likelihood is
given in relation 4.1:

L =

n∏
x=1

(
lx
dx

)
qx

dx(1− qx)
lx−dx (4.1)

The unknown element in the above likelihood is qx. In order to estimate the max-
imum likelihood for unknown parameters of the model, the natural logarithm of L
is obtained and the corresponding mathematical form is given in equation: 4.2:

logL =

n∑
x=1

[log

(
lx
dx

)
+ dxlogqx + (lx − dx)log(1− qx)] (4.2)

4.2. Least Squares. Suppose, the initial mortality rate estimation at age x is
the value that is adjusted in this age. The choice of the suitable model m(x) is
conducted by adjusting estimated values as close as possible to the observed values.
In order to achieve the minimization of the distance between real and estimated
values, the method of weighted least squares is applied, which is given by relation
4.3

n∑
x=1

wx[qx −m(x)]2 (4.3)

5. Beta distribution and mortality Models

The Gompertz-Makeham distribution expresses the law stating that mortality
rate represents the sum of an independent component λ and a component that de-
pends on the age which increases exponentially with time. The Gompertz-Makeham
law satisfactorily describes the dynamic human age, but there is a loss of accuracy
between 30 and 80 years. In literature, studies report that death rates after the age
of 80 years increases more slowly, a phenomenon called as decelerating mortality
(Gavrilov, L., Gavrilova, N. [6]). The probability density function of Gompertz-
Makeham distribution (pdf) is given as follows in relation 5.1

f(x) = (aebx + λ)e−λx− a
b (e

bx−1), a > 0, b > 0, λ > 0, x ≥ 0 (5.1)

The corresponding hazard function of Gompertz-Makeham is given in relation
5.2:

h(x) = aebx + λ, λ > 0, x ≥ 0 (5.2)

The corresponding cumulative distribution function of Gompertz-Makeham is
given in relation 5.3:

F (x) = 1− e−λx− a
b (e

bx−1), a > 0, b > 0, λ > 0, x ≥ 0 (5.3)

The Gompertz-Generalized Makeham distribution has the following probability
density function 5.4:

f(x) = (2κθξx+ λ+ θeξx)[e−(κθξx2+λx+ θ
ξ (e

ξx−1)], κ, θ, ξ, λ > 0, x ≥ 0 (5.4)

and the corresponding cumulative distribution function is given as follows in relation
5.5:

F (x) = 1− e−(κθξx2+λx+ θ
ξ (e

ξx−1)], κ, θ, ξ, λ > 0, x ≥ 0 (5.5)
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The Beta distribution has been used widely in the past years in a variety of scientific
fields. Beta distribution is capable of being adapted in a variety of data by each
researcher, always under the appropriate transformation. In regression models,
Beta distribution is used by researchers for modeling data taking values in the
interval (0, 1). For combining Beta distribution with the aforementioned mortality
models, Generated Beta distribution is used (M. Zografos, N. Balakrishnan [17]).
The corresponding probability density function is given by 5.6:

g(x) =
f(x)

B(α, β)
[F (x)]α−1[1− F (x)]β−1, α, β > 0, x ≥ 0 (5.6)

where F (x) = 1−S(x) and h(x) = f(x)/S(x) the corresponding hazard function.
From the family of Beta distribution applies relation 5.7:

B(α, β) =

∫ 1

0

tα−1(1− t)(β−1)dt (5.7)

Generally, Gompertz distribution is a flexible distribution that is asymmetrical
right or left. In addition, this distribution is a generalization of the exponential
distribution and is widely used in many applicant problems, especially in life data
analysis (Johnson, Kotz and Balakrishnan 1995). The combination of Generated
Beta distribution with the Gompertz distribution leads to Beta-Gompertz distribu-
tion (Ali Akbar Jafari, SaeidTahmasebi, MoradAlizadeh, (2014)) with probability
density function 5.8:

f(x) =
aebxe−

a
b (e

bx−1)

B(α, β)
(1− e−

a
b (e

bx−1))α−1(e−
a
b (e

bx−1))b−1, α > 0, b > 0 (5.8)

Combination of Generated Beta distribution with the Gompertz-Makeham distri-
bution leads to Beta-Gompertz-Makeham distribution (Chukwu A. U., Ogunde A.
A. [4]) with probability density function 5.9:

f(x) =
(aebx + λ)e−λx− a

b (e
bx−1)

B(α, β)
(1− e−λx− a

b (e
bx−1))α−1(e−

a
b (e

bx−1))b−1 (5.9)

6. The proposed ANBE model

As pre mentioned, this work presents a mixed version of the generalized Gompertz-
Makeham distribution with Beta distribution that is quite flexible in respect to
its parameters. The name of this is ANBE model. Beta Gompertz Generalized
Makeham (BGGM or ANBE) distribution is a decreasing or increasing or bathtub-
shaped density function according to its six parameters. The proposed distribution
(BGGM or ANBE), applied in real mortality data and especially in diseases, suc-
ceeds higher values in the corresponding fit criteria (Log-likelihood, AIC, BIC) and
seems to fit better in real data compared to other distributions, such as Gompertz,
Gompertz Makeham, Beta Gompertz, Beta Gompertz Makeham. Available data
were in the form (dx, lx), where dx represents the number of deaths (or diseases)
at age x=1,2,,n and lx represents the total of individuals up to that age x. The
abundant mortality index in that event is given from equation of relation 6.1:

qx =
dx
lx

(6.1)
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6.1. General Linear Method (GLM) and Beta distribution. Mortality rates
are smoothed, through GLM, based on the assumption that the response variable
Dx follows a binomial distribution (Haberman [8]). In addition, mortality intensity
μx is assumed to be a constant in ages intervals (x,x+1], therefore is symbolized with
μx+1/2 (Haberman and Pitacco [9], Renshaw et al. [16]). It is noted that ages should
be separated in subintervals and in each one of these a different model is adapted.
This method is well known as smoothing through splines methods. In this work, a
spline function is the age function x=1,2,...,n that gives the smoothed values. The
proposed BGGM mortality model (Beta Gompertz Generalized Makeham) based
in mixing Beta, Gompertz and generalized Makeham distributions has probability
density function, as follows 6.2:

f(x) =
(2κθξx+ λ+ θeξx)[e−(κθξx2+λx+ θ

ξ (e
ξx−1)]

B(α, β)
×

× (1− e−(κθξx2+λx+ θ
ξ (e

ξx−1))α−1(e−(κθξx2+λx+ θ
ξ (e

ξx−1))b−1,

κ, θ, ξ, λ, α, b > 0 (6.2)

6.2. Some Statistical Properties of ANBE model. In this paragraph function
f(x) is verified to be a probability density function, as well as the cumulative den-
sity G(x) and hazard rate H(x) functions of the proposed BGGM distribution are
investigated. In addition, the asymptotic behavior of probability density function
BGGM is examined for specific values of its parameters.

Corollary 6.1. Let f(x) be the pdf of a variable x that follows the BGGM distri-
bution. The asymptotic behavior of function for different values of its parameters
is given below:

i. If α = 1 then limx→0+ f(x) = b(λ + θ), i.e., when variable x tents to zero
and parameter α is equal to one, the corresponding pdf of BGGM takes a constant
value, depending to its parameters.

ii. If α > 1 then limx→0+ f(x) = 0, i.e., when variable x tents to zero and
parameter α is greater than one, the corresponding pdf of BGGM takes a zero
value.

iii. If 0 < α < 1 then limx→0+ f(x) = +∞, when variable x tents to zero, the
corresponding pdf of BGGM is non decreasing and tends to infinity.

iv. limx→+∞ f(x) = 0, when variable x tents to infinity, the corresponding pdf
of BGGM takes a zero value.

7. Application on different data set

In this section, obtaining actual mortality data from the Greek Statistical Ser-
vice for the year 2011 for Greece, the direct comparison of proposed distribution
(BGGM) with a lot of known distributions such as Gompertz, Gompertz - Make-
ham, Beta - Gompertz and Beta-Gompertz - Makeham distributions is attempted.
As mentioned, the analysis relied on 2011 disease data tabulated by age (5-year
groups) and sex provided by the Greek Statistical Authority (ELSTAT) as part
of the natural movement of the population of Greece. Deaths are decomposed by
different causes, endogenous or external causes of death. The data modelling and
the corresponding distributions functions, were conducted by using open code R
(www.r-project.org) and corresponding packages of algorithms by CRAN digital
library (Comprehensive R Archive) http://cran.r-project.org. Mortality rates for
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Male Female
Mortality Models Log-

likelihood
AIC BIC Log-

likelihood
AIC BIC

Gompertz -387.0 778.1 779.9 -155.7 315.4 317.1
Gompertz Make-
ham

-354.1 714.3 717.0 -142.3 290.7 293.4

Beta Gompertz -116.6 241.2 244.7 -109.7 227.4 231.0
Beta Gompertz
Makeham

-114.4 238.9 243.4 -107.9 225.9 230.4

Beta Gompertz
Generalized Make-
ham (ANBE)

-99.7 217.5 225.5 -92.1 202.2 210.2

Table 1. Statistical criteria for controlling Suitability distribu-
tions - Cancer

Male Female
Mortality Models Log-

likelihood
AIC BIC Log-

likelihood
AIC BIC

Gompertz -64.0 132.1 135.8 -83.1 170.3 172.1
Gompertz Make-
ham

-62.1 132.3 136.3 -58.5 123.1 131.7

Beta Gompertz -60.9 134.0 133.9 -57.9 123.0 129.6
Beta Gompertz
Makeham

-58.0 131.9 132.5 -57.5 125.1 125.8

Beta Gompertz
Generalized Make-
ham (ANBE)

-52.4 110.9 113.5 -52.8 123.7 122.8

Table 2. Statistical criteria for controlling Suitability distribu-
tions - Endocrine

exogenous and endogenous factors were used, for men and women. The number of
deaths at age x, dx, is based on a sample of size l, where l is the total amount of
deaths. Consequently, the initial assessment of the mortality rates is considered as
follows 7.1:

ux =
dx
lx

(7.1)

In the following figures (1-6), mortality rate models are presented according to
the distributions used, as well as, sex and region. Red line corresponds to the
proposed ANBE (BGGM) model that seems to fit better in the actual data, both
for men and women, as well as for different endogenous causes of death. At the
figures, the number 5 corresponds to 25 years old, the number 10 corresponds to 50
years old, the number 15 corresponds to 75 years old and the number 20 corresponds
to 100 years old at the x axis.

Results in Tables 1, 2 and 3 indicate that the ANBE model appears to have
the best fit for the three major causes of death (cancer, endocrine, nutritional and
metabolic diseases and circulatory system causes) examing both men and women.
This is verified based on all three criteria: the AIC, BIC and log-likelihood criterion.
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Male Female
Mortality Models Log-

likelihood
AIC BIC Log-

likelihood
AIC BIC

Gompertz -1020.9 2045.8 2047.6 -1008.3 2020.7 2022.5
Gompertz Make-
ham

-485.7 977.5 980.2 -233.0 472.0 474.7

Beta Gompertz -120.6 249.3 252.9 -106.3 220.6 224.1
Beta Gompertz
Makeham

-119.4 248.8 250.3 -103.4 216.9 221.3

Beta Gompertz
Generalized Make-
ham (ANBE)

-104.3 226.6 234.7 -81.0 180.1 188.1

Table 3. Statistical criteria for controlling Suitability distribu-
tions - Circulatory system

Male Female
Mortality Models Log-

likelihood
AIC BIC Log-

likelihood
AIC BIC

Gompertz -268.5 541.0 542.7 -102.7 209.5 211.3
Gompertz Make-
ham

-251.2 508.4 511.1 -86.2 178.4 181.1

Beta Gompertz -102.4 212.9 216.5 -73.9 155.8 159.4
Beta Gompertz
Makeham

-102.1 210.9 219.4 -73.8 157.6 162.1

Beta Gompertz
Generalized Make-
ham (ANBE)

-90.9 199.8 207.8 -67.1 152.2 160.2

Table 4. Statistical criteria for controlling Suitability distribu-
tions - All external causes

In the following figures (7-12), mortality rate models are presented according to the
distributions used, as well as, sex and region. Red line corresponds to the proposed
ANBE (BGGM) model that seems to fit better in the actual data, both for men
and women, as well as for different external causes of death

8. Conclusions

The estimators of mortality as described earlier, i.e. indicative mortality rates
(crude mortality rates) are subjected to the sampling errors, allowing a non-smooth
progress from age to age. Suppose that these errors are only due to random vari-
ability that is inherent in the finite sample observe. Specifically, increasing the
sample size leads to a decrease of errors and the target prices have smooth progress
along ages. Thus, mortality can be assumed to be a continuous and smooth func-
tion of age. The process of eliminating random errors is known as normalization
(graduation). Smoothing, practical means to remedy the lack of possibility of ex-
istence of an infinite sample size with an alternative assessment of mortality rates
as accurately as possible. Real mortality data is approached satisfactorily by the
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Male Female
Mortality Models Log-

likelihood
AIC BIC Log-

likelihood
AIC BIC

Gompertz -188.0 380.1 381.9 -61.9 127.8 129.6
Gompertz Make-
ham

-179.9 365.9 368.6 -60.0 126.1 128.8

Beta Gompertz -87.5 185.0 189.5 -57.9 123.9 127.5
Beta Gompertz
Makeham

-87.5 183.1 186.7 -57.4 124.9 126.3

Beta Gompertz
Generalized Make-
ham (ANBE)

-75.9 169.9 177.9 -46.8 111.6 119.6

Table 5. Statistical criteria for controlling Suitability distribu-
tions - Car accidents

Male Female
Mortality Models Log-likelihood AIC BIC Log-likelihood AIC BIC
Gompertz -80.7 165.4 167.2 -82.2 168.5 170.3
Gompertz Make-
ham

-67.4 140.8 148.8 -64.7 135.4 146.4

Beta Gompertz -66.1 140.2 147.8 -62.5 133.1 139.6
Beta Gompertz
Makeham

-66.0 140.1 146.6 -62.5 131.1 138.1

Beta Gompertz
Generalized Make-
ham (ANBE)

-60.9 139.8 143.7 -60.2 130.4 136.7

Table 6. Statistical criteria for controlling Suitability distribu-
tions - Mental and behavioral disorder

corresponding distributions that were mentioned before (Figures 1-12). The pro-
posed ANBE distribution (red color) approximates data much better for both men
and women, as well as, for different endogenous and external causes of death. By
using goodness of fit tests, the comparison of proposed distribution with other dis-
tributions is attempted. The corresponding results in the tables above (1-6) and
the corresponding criteria values, such as the log-likelihood (Loglik), AIC (Akaike
Information Criterion) and BIC (Bayesian Information Criterion) show that ANBE
model has the best fit to the different data set. As reported on Tables and Figures,
different model selection criteria have led to the same conclusions, showing that
this model has the best fit for all different causes of death and for both sexes. This
is a very promising sign that our new ANBE distribution achieves better values
compared to other distributions when applied on Greek mortality data. It remains
to be examined if it can be applied on different datasets and various time periods.

References

Ali Akbar Jafari, SaeidTahmasebi, MoradAlizadeh, (2014). The Beta-Gompertz
Distribution, Article in Revista Colombiana de Estadistica May 2014.



12 ANDREOPOULOS P., BERSIMIS. G. F., TRAGAKI A.

Benjamin, P. and Polland, J.H. (1980). The Analysis of Mortality and Other
Actuarial Statistics, Heinemann, London.

Camarda, C.G. (2012). MortalitySmooth: An R Package for Smoothing Poisson
Counts with P-Splines. JSS, 50, 1-24. URL http://www.jstatsoft.org/v50/i01/.

Chukwu A. U., Ogunde A. A. (2015). On the Beta Makeham Distribution and Its
Applications, American Journal of Mathematics and Statistics 2015, 5(3): 137-143.

Deallaportas et al (2001). Bayesian Analysis of Mortality data. J.R. Statist.
Soc. A. Part 2, pp. 275-269.

Gavrilov, L., Gavrilova, N. (2006). Reliability theory of aging and longevity. In:
Handbook of the Biology of Aging. Academic Press, 6th edition.

Greek Statistical Authority (2015). EL.STAT. Mortality data for the years 2000
- 2012, Greece.

Haberman, S. (1998). Actuarial Methods, Encyclopedia of Biostatistics, 1, (Eds.,
P. Armitage and Th. Colton), 37-49, John Wiley and Sons, New York.

Haberman, S. and Pitacco, E. (1999). Actuarial Models for Disability Insurance,
Chapman.

Hatzopoulos, P. (1997). Statistical and Mathematical Modeling for Mortality
trends and the Comparison of Mortality Experiences through Generalised Linear
Models and GLIM, PhD Thesis, The City University, London.

Johnson, R.C.E. and Johnson, N.L. (1980). Survival Models and Data Analysis,
John Wiley and Sons, New York.

London, D. (1985). Graduation: The Revision of Estimates, ACTEX Publica-
tions, Winsted, Connecticut.

Lytrokapi, 1998. PARAMETRIC MODELS OF MORTALITY, Their Use in
Demography and Actuarial Science, Master Thesis, Athens University of Economics
Business (Statistic).

Nadarajah S., Kotz S., The beta exponential distribution, Reliab. Eng. Syst.
Safety 91 (2006) 689 697.

Papaioannou T., And Ferentinos K. (2000). Mathematical Statistics, Publica-
tions Ath. Stamoulis, Athens.

Renshaw, A.E., Haberman, S and Hatzopoulos, P. (1996a). On the Duality of
Assumptions Underpinning the Constructions of Life Tables, ASTIN Bulletin 27.

Zografos K., Balakrishnan N., (2009). On families of beta and generalized
gamma-generated distributions and associated inference, Statistical Methodology 6
(2009) 344-362

Department of Geography, Harokopio University, El. Venizelou 70, 176 71 Athens,

Greece, Department of Informatics and Telematics, Harokopio University, 9, Omirou

Str., 17778, Tavros, Greece

E-mail address: pandreop@hua.gr, fbersim@hua.gr, atragaki@hua.gr



MORTALITY DATA MODELLING 13

Figure 1. ANBE
[BGGM] (All Can-
cers) - Males

Figure 2. ANBE
[BGGM] (En-
docrine, nutritional
and metabolic
diseases) - Males

Figure 3. ANBE
[BGGM] (Diseases
of circulatory sys-
tem) - Males

Figure 4. ANBE
[BGGM] (All Can-
cers) - Females

Figure 5. ANBE
[BGGM] (En-
docrine, nutritional
and metabolic
diseases) - Females

Figure 6. ANBE
[BGGM] (Diseases
of circulatory sys-
tem) - Females



14 ANDREOPOULOS P., BERSIMIS. G. F., TRAGAKI A.

Figure 7. ANBE
[BGGM] (All Exter-
nal causes)-Males

Figure 8. ANBE
[BGGM] (Car acci-
dents) - Males

Figure 9. ANBE
[BGGM] (Mental
and behavioral
disorder) - Males

Figure 10. ANBE
[BGGM] (All Exter-
nal causes) - Females

Figure 11. ANBE
[BGGM] (Car acci-
dents) - Females

Figure 12. ANBE
[BGGM] (Mental
and behavioral
disorder) - Females
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M−MATRICES AND THEIR EXTENSIONS

THANIPORN CHAYSRI

Abstract. The foundations of what today is called M-matrix was originally
chosen by Alexander Ostrowski in reference to Hermann Minkowski, which

consider the square matrices of the form A = sI − B. In this paper, we first

study the matrices of the form A = sI −B, where B is entrywise nonnegative
and 0 ≤ ρ(B) ≤ s, which calledM−matrices. Then we discuss on the extension

of the class of M−matrices named Mv−matrices, where B is an eventually
nonnegative matrix. Finally, we study the Schur complement of the class of

Mv−matrices and present some results.

1. Introduction

The term M−matrix (Minkowski matrix) was first used by Ostrowski [15, 16]
in reference to the work of Minkowski [10, 11], who proved that the determinant of
A ∈ Zn,n is positive if all of its row sums are positive. We defined as M−matrices
the matrices of the form A = sI − B, where B is entrywise nonnegative (B ≥ 0)
and 0 ≤ ρ(B) ≤ s.

After the Perron-Frobenius Theory was established, Friedland [7] introduced the
class of eventually nonnegative matrices as the n × n real matrices A for which
exists an integer k0 > 0 such that Ak ≥ 0 for all k ≥ k0. Recall that a matrix A
is said to be eventually positive if there exists an integer k0 > 0 such that Ak > 0
(Ak is entrywise positive) for all k ≥ k0.

In 2006, Noutsos [12] extended the Perron-Frobenius Theory by introducing
the definitions of the Perron-Frobenius property and the strong Perron-Frobenius
property. Recall that a matrix A ∈ Rn,n possesses the Perron-Frobenius property
if its dominant eigenvalue λ1 > 0 and the corresponding eigenvector x(1) ≥ 0. A
matrix A ∈ Rn,n possesses the strong Perron-Frobenius property if its dominant
eigenvalue λ1 > 0 and λ1 > |λi|, i = 2, 3, . . . n and the corresponding eigenvector
x(1) > 0 [12].

The term pseudo M−matrix, the matrix A = sI − B, where 0 < ρ(B) < s and
B being an eventually positive matrix, was introduced in 2004 by Johnson and
Tarazaga [8]. Afterward, the term Mv−matrix was introduced in 2006 by Olesky
et al.[14] for matrices A = sI − B, where 0 ≤ ρ(B) ≤ s and B is eventually
nonnegative matrix. Later on, in 2008, Elhashash and Szyld [5] studied the class of
EM−matrices, where 0 < ρ(B) ≤ s and B being an eventually nonnegative matrix.

2010 Mathematics Subject Classification. 65F10, 15A48.
Key words and phrases. M−matrices; Mv−matrices; Schur complement; Perron-Frobenius

theory.
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From the definition, the class of EM−matrices is strictly subclass of Mv−matrices,
since B in the class of Mv−matrices may be a nilpotent matrix.

Finally, the class of generalized M−matrices or GM−matrices contain matri-
ces of the form A = sI − B, where 0 < ρ(B) ≤ s and both B,BT possess the
Perron-Frobenius property. An extension of M−matrices are used in many fields
such as mathematics (iterative methods, discretizations of differential operators),
economics (gross substitutability, stability of a general equilibrium and Leontief’s
input-output analysis in economic systems), optimization, Markov chains in the
field of probability theory and operation research like queuing theory, engineering
(control theory) and also biology (population dynamics).

Let A ∈ Rn,n and suppose A11 is a nonsingular principal submatrix of A. The
Schur complement of A11 in A [4], denoted by (A/A11), is defined as follows: Let Â
be the matrix obtained from A by simultaneous permutation of rows and columns
which puts A11 into the upper left corner of Â.

A =

[
A11 A12

A21 A22

]
. (1.1)

Then, the Schur complement of A11 in A is

(A/A11) = A22 −A21A11
−1A12 (1.2)

and the Schur’s formula is

detA = detA11 det(A/A11).

The study of the Schur complement of M−matrices was introduced by Crabtree
[2, 3] and Ky Fan [6].

2. M−matrices

First, we give the example of various class of M−matrices categorized by defi-
nition:

Example 2.1. Let a matrix A1 = sI −B1 with

B1 =

⎡
⎢⎢⎣
3 1 0 0
3 1 0 0
0 0 2 2
0 0 1 2

⎤
⎥⎥⎦ , s > 4.

ρ(B1) = 4 and B1 a nonnegative matrix. Suppose s = 5, we have that

A1 = 5I −B1 =

⎡
⎢⎢⎣

2 −1 0 0
−3 4 0 0
0 0 3 −2
0 0 −1 3

⎤
⎥⎥⎦ is an M−matrix.

Example 2.2. Let a matrix A2 = sI −B2 with

B2 =

⎡
⎢⎢⎣
1 1 1 −1
1 1 2 −1
0 0 2 2
0 0 1 2

⎤
⎥⎥⎦ , s ≥ 3.4142.

ρ(B2) = 3.4142 and B2 is eventually nonnegative (∀k ≥ 3, Bk
2 ≥ 0). For every

s ≥ 3.4142, A2 is an EM−matrix.
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Example 2.3. Let a matrix A3 = sI −B3 with

B3 =

⎡
⎣2 −0.5 1
3 4 2
4 1 5

⎤
⎦ , s ≥ 6.4326.

ρ(B3) = 6.4326 and B3 is eventually nonnegative (∀k ≥ 5, Bk
3 ≥ 0). For every

s ≥ 6.4326, A3 is an Mv−matrix. Obviously it is also an EM−matrix.

Example 2.4. Let a matrix A4 = sI −B4 with

B4 =

⎡
⎢⎢⎢⎢⎣
0 1 3 −2 1
0 0 2 −3 −1
0 0 0 1 3
0 0 0 0 4
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , s ≥ 0.

ρ(B4) = 0 and B4 is eventually nonnegative (∀k ≥ 3, Bk
4 ≥ 0). Remark that B4 is

a nilpotent matrix (∀k ≥ 5, Bk
4 = 0). For every s ≥ 0, A4 is Mv−matrix, however

it is not an EM−matrix.

Example 2.5. Let a matrix A5 = sI −B5 with

B5 =

⎡
⎢⎢⎣
3 2 −1 1
2 3 1 −1
5 2 1 0
2 5 0 1

⎤
⎥⎥⎦ , s > 5.

ρ(B5) = 5, B5 and BT
5 possess the Perron-Frobenius property with Perron-Frobenius

eigenpairs
(
5, (0.5714 0.5714 1 1)T

)
and

(
5, (1 1 0 0)T

)
but B is not eventually

nonnegative. A5 is a GM−matrix.

Some properties of the nonsingular M−matrices are given by Plemmons [17] as
follows:

Theorem 2.6. [17] Let A ∈ Rn,n, n ≥ 2. Then each of the following conditions is
equivalent to the statement: A is a nonsingular M−matrix.

(1) (A+D)−1 > 0, for each diagonal matrix D ≥ 0.
(2) (A+ αI)−1 > 0, ∀α ≥ 0.
(3) The inverse of each principal submatrix of A is positive.
(4) The inverse of each principal submatrix of A of orders 1, 2 and n is positive.

This theorem gave necessary and sufficient conditions of a nonsingular matrix to
be an M−matrix.

Theorem 2.7. A matrix A is a nonsingular M−matrix iff A is a Z−matrix (the
class of matrices with nonpositive offdiagonal entries and nonnegative the diagonal
ones ) and A−1 ≥ 0.

The following theorem is concentrated to irreducible nonsingular M−matrices.

Theorem 2.8. A matrix A ∈ Rn,n is an irreducible and nonsingular M−matrix
iff A is a Z−matrix and A−1 > 0.

Johnson and Tarazaga [8] generalized the property above to the class of pseudo
M−matrices as follows:
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Theorem 2.9. [8] If A = sI−B is a pseudo M−matrix, then A−1 is an eventually

positive matrix (A−1
v
> 0).

Proof. Suppose that A = sI − B is a pseudo M−matrix and let B an eventually
positive matrix with s > ρ(B). Let λ = ρ(B) and associated right and left eigen-
vector Bx = λx and yTB = λyT , respectively, with x, y > 0. Because A = sI −B,
we can say that (s− λ)−1 is a strictly dominant positive eigenvalue for A−1.

Then, Ax = (s−λ)x with x a right eigenvector of A−1 associated with (s−λ)−1,
and similarly, yT is a left eigenvector of A−1. Hence, from the Theorem 1 [8], A−1

is eventually positive. �
The study of nonsingular M−matrix that created with irreducible eventually

nonnegative matrices (Mv−matrices) was extended by Le and McDonald [9] and
then by Olesky et al. [14]. Some properties are presented here.

Theorem 2.10. [14] Suppose an Mv−matrix A ∈ Rn,n, A = sI − B with B an
eventually nonnegative matrix and 0 ≤ ρ(B) ≤ s. Then

(1) s− ρ(B) ∈ σ(A).
(2) Reλ ≥ 0, ∀λ ∈ σ(A).
(3) det(A) ≥ 0, det(A) = 0 iff s = ρ(B).
(4) If, in particular, ρ(B) > 0, then there exists an eigenvector x ≥ 0 of A and

an eigenvector y ≥ 0 of AT corresponding to λ(A) = s− ρ(B).
(5) If, in particular, B is eventually positive and s > ρ(B), then in (4) x >

0, y > 0 and in (2) Reλ > 0, ∀λ ∈ σ(A).

Theorem 2.11. [14] Let A ∈ Rn,n written in a form A = sI − B, where B is
an eventually nonnegative and B has a positive eigenvector corresponding to ρ(B).
Consider the following conditions:

(1) A is an Mv−matrix.
(2) There exists an invertible diagonal matrix D ≥ 0 such that the row sums of

AD are nonnegative.
(3) ∃x > 0 such that Ax ≥ 0.

Then, (1) ⇒ (2) ⇔ (3). If, in addition, B is not nilpotent, then all conditions
(1)− (3) are equivalent.

We can give an example to see how Theorem 2.11 works.

Example 2.12. Let a matrix A = sI −B with

B =

⎡
⎢⎢⎣
1 1 0 0
1 1 0 0
0 0 −1 2
0 0 1 2

⎤
⎥⎥⎦ , s ≥ 2.5616 .

ρ(B) = 2.5616 and B is eventually nonnegative (∀k ≥ 4, Bk ≥ 0).

Suppose s = 3, then A = 3I −B =

⎡
⎢⎢⎣

2 −1 0 0
−1 2 0 0
0 0 4 −2
0 0 −1 1

⎤
⎥⎥⎦ is an Mv−matrix.

There exists an invertible diagonal matrix D =

⎡
⎢⎢⎣
3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ≥ 0
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such that AD =

⎡
⎢⎢⎣

6 −2 0 0
−3 4 0 0
0 0 4 −2
0 0 −1 1

⎤
⎥⎥⎦ and every row sum of AD is nonnegative.

In addition, ∃x = (1 1 1 1)T > 0 such that Ax = (1 1 2 0)T ≥ 0.

The next theorem present some properties of singular Mv−matrices:

Theorem 2.13. [14] Let a singular Mv−matrix A ∈ Rn,n written in the form
A = sI −B, where B is eventually positive. Then, the following hold.

(1) rank(A) = n− 1.
(2) ∃x > 0 such that Ax = 0.
(3) If for some vector u 	= x such that Au ≥ 0, then u = 0.

The properties of generalized M−matrices or GM−matrices were given by El-
hashash and Szyld [5] as follows:

Theorem 2.14. [5] Let a matrix A ∈ Rn,n whose eigenvalues have the order |λ1| ≥
|λ2| ≥ · · · ≥ |λn|. Then, A is a nonsingular GM−matrix iff A−1 and A−1T possess
the Perron-Frobenius property and for the eigenvalues of A there hold 0 < λn <
Re(λi) for all λi 	= λn.

Corollary 2.15. [5] A matrix A ∈ Rn,n is a nonsingular GM−matrix iff A and
AT possess the Perron-Frobenius property and Re(λ−1) > ρ(A)−1, ∀λ ∈ σ(A),
λ 	= ρ(A).

Corollary 2.16. [5] Every real eigenvalue of a nonsingular GM−matrix is positive.

In Example 2.5, A5 is not a nonsingular GM−matrix because AT
5 does not pos-

sess the Perron-Frobenius property (the eigenpair ofAT
5 is

(
5, (−1 − 1 0.5714 0.5714)T

)
).

From the definition, the class of M−matrices is a subclass of EM−matrices
and the class of pseudo M−matrices is also a subclass of EM−matrices, however
an M−matrix may not be a pseudo M−matrix. The class of EM−matrices is
a subclass of Mv−matrices and the class of Mv−matrices is also a subclass of
GM−matrices because for every B eventually nonnegative, both B and BT possess
Perron-Frobenius property (see Theorem 2.3, [12]). The description given above is
showed in the diagram below.

Figure 1. A diagram shows the relations between various class of
M−matrices using the Perron-Frobenius property.
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3. Schur complement of various class of M−matrices

Let A = sI − B, where B is entrywise nonnegative and 0 ≤ ρ(B) ≤ s, an
M−matrix of the form (1.1). Crabtree showed that the Schur complement of an
M−matrix is also an M−matrix [2] and his work with Haynsworth [4] also tell us
about the quotient property of the Schur complement of a matrix (see theorem in
[4]). The associated B of the Schur complement (A/A11), denoted by Bϕ is

Bϕ = sI − (A/A11)

and we can use the same s for Bϕ, since ρ(Bϕ) ≤ ρ(B) < s (see Theorem 2.7,
Noutsos [12]).

Watford Jr. [19] studied the Schur complement of a GM−matrix with respect to
the theory of cone in vector spaces and to the minimal eigenvector of a GM−matrix,
we have result that the Schur complement of a GM−matrix is a GM−matrix if
the matrix belongs in some direct sum cone. One question arises here: Is the Schur
complement of an Mv−matrix also an Mv−matrix for every case or do we have
to find some special conditions of Mv−matrices to guarantee the Mv− property of
Schur complement?

From the matrices of examples 2.2, 2.3, 2.4 it can be checked that all their
Schur complements are Mv−matrices for A11 being any principal submatrix of A.
However, there is someMv−matrix, whose Schur complement is not anMv−matrix,
as we can observe in the following example:

Example 3.1. Let a matrix A = sI −B with

B =

⎡
⎢⎢⎣
3 3 −1 1
3 3 1 −1
5 3 1 1
3 5 1 1

⎤
⎥⎥⎦ , s > 6.

ρ(B) = 6 and B is eventually nonnegative (∀k ≥ 64, Bk ≥ 0).

Suppose s = 8, we have that A = 8I−B =

⎡
⎢⎢⎣

5 −3 1 −1
−3 5 −1 1
−5 −3 7 −1
−3 −5 −1 7

⎤
⎥⎥⎦ is an Mv−matrix.

Suppose A11 = [5], A22 =

⎡
⎣ 5 −1 1
−3 7 −1
−5 −1 7

⎤
⎦, then the Schur complement

(A/A11) =

⎡
⎣ 3.2 −0.4 0.4

−6 8 −2
−6.8 −0.4 6.4

⎤
⎦

is not an Mv−matrix because the associated Bϕ is not an eventually nonnegative
matrix (BT

ϕ does not possess the Perron-Frobenius property).

The study of the Schur complement of an Mv−matrix can be separated into 2
cases: the irreducible and reducible Mv−matrices.

• Reducible Mv−matrix

Let A = sI −B a reducible Mv−matrix and suppose A11 is a nonsingular prin-
cipal submatrix of A. Suppose Â be the matrix obtained from A by simultaneous
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permutation of rows and columns which puts A11 into the upper left corner of Â
then we have

A =

[
A11 A12

0 A22

]
.

Then, the Schur complement of A11 in A is

(A/A11) = A22 − 0 A11
−1A12 = A22.

If A22 is an Mv−matrix, then it is trivial that the Schur complement is also an
Mv−matrix.

• Irreducible Mv−matrix

This case is still in process. We can give some observations as follows:
Let A = sI −B an irreducible Mv−matrix of the form (1.1) and B written as:

B =

[
B11 B12

B21 B22

]
.


 Suppose that both submatrix A11 and A22 of A are Mv−matrices, then the
associated Schur complement (A/A11) is also an Mv−matrix.

Example 3.2. Let an Mv−matrix A = sI −B with

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 −1 1 1
3 1 2 1 −1 1
2 3 1 1 1 −1
5 4 7 1 1 1
7 5 4 1 1 1
4 7 5 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦ , s > 8.772.

ρ(B) = 8.772 and B is an eventually nonnegative matrix.

Suppose s = 11, we have that A = 11I − B =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 −2 −3 1 −1 −1
−3 10 −2 −1 1 −1
−2 −3 10 −1 −1 1
−5 −4 −7 10 −1 −1
−7 −5 −4 −1 10 −1
−4 −7 −5 −1 −1 10

⎤
⎥⎥⎥⎥⎥⎥⎦ is

an Mv−matrix.

Suppose A11 =

⎡
⎢⎢⎣
10 −2 −3 1
−3 10 −2 −1
−2 −3 10 −1
−5 −4 −7 10

⎤
⎥⎥⎦ and B11 =

⎡
⎢⎢⎣
1 2 3 −1
3 1 2 1
2 3 1 1
5 4 7 1

⎤
⎥⎥⎦ an eventually

nonnegative matrix, A22 =

[
10 −1
−1 10

]
and B22 =

[
1 1
1 1

]
a positive matrix.

Then, the Schur complement

(A/A11) =

[
8.4021 −2.6298

−2.3745 8.4021

]
is an Mv−matrix because the associated Bϕ is a positive matrix. (Obviously, it is
an M−matrix.)
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 If A22 is an Mv−matrix, then the associated Schur complement (A/A11) is
always an Mv−matrix, even if A11 is not.


 If A22 is not an Mv−matrix, then the associated Schur complement (A/A11)
may not be an Mv−matrix, or may be.

Here is an example for the Schur complement (A/A11) which is not anMv−matrix.

Example 3.3. Let an Mv−matrix A = sI −B with

B =

⎡
⎢⎢⎣
1 3 2 −1
1 2 1 3
0 1 2 −1
1 2 1 −1

⎤
⎥⎥⎦ , s > 4.5734.

ρ(B) = 4.5734 and B is an eventually nonnegative matrix.

Suppose s = 7, we have that A = 7I−B =

⎡
⎢⎢⎣

6 −3 −2 1
−1 5 −1 −3
0 −1 5 1

−1 −2 −1 8

⎤
⎥⎥⎦ is an Mv−matrix.

Suppose A11 =

[
6 −3

−1 5

]
and B11 =

[
1 3
1 2

]
, A22 =

[
5 1

−1 8

]
and B22 =

[
2 −1
1 −1

]
is not an eventually nonnegative matrix.

Then, the Schur complement

(A/A11) =

[
4.7037 0.3704

−2.0741 6.5926

]
is not an Mv−matrix because the associated Bϕ is not an eventually nonnegative
matrix.

Here is an example for the Schur complement (A/A11) which is also anMv−matrix.

Example 3.4. Let an Mv−matrix A = sI −B with

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 3 2 0 1 4 8 −1
3 0 4 1 2 5 1 −4
2 4 3 6 8 −2 1 4
3 4 8 3 1 −1 4 2
2 1 −1 2 3 4 2 4
1 2 3 1 2 4 3 1
3 −1 5 7 8 4 2 0

23 3 −14 5 4 3 −2 −10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, s > 22.0670.

ρ(B) = 22.0670 and B is an eventually nonnegative matrix.

Suppose s = 24, we have that A = 24I−B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 −3 −2 0 −1 −4 −8 1
−3 24 −4 −1 −2 −5 −1 4
−2 −4 21 −6 −8 2 −1 −4
−3 −4 −8 21 −1 1 −4 −2
−2 −1 1 −2 21 −4 −2 −4
−1 −2 −3 −1 −2 20 −3 −1
−3 1 −5 −7 −8 −4 22 0

−23 −3 14 −5 −4 −3 2 34

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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is an Mv−matrix.

Suppose A11 =

[
14 −3
−3 24

]
and B11 =

[
10 3
3 0

]
, A22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

21 −6 −8 2 −1 −4
−8 21 −1 1 −4 −2
1 −2 21 −4 −2 −4

−3 −1 −2 20 −3 −1
−5 −7 −8 −4 22 0
14 −5 −4 −3 2 34

⎤
⎥⎥⎥⎥⎥⎥⎦

and B22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 6 8 −2 1 4
8 3 1 −1 4 2

−1 2 3 4 2 4
3 1 2 4 3 1
5 7 8 4 2 0

−14 5 4 3 −2 −10

⎤
⎥⎥⎥⎥⎥⎥⎦ is not an eventually nonnegative matrix.

Then, the Schur complement

(A/A11) =

⎡
⎢⎢⎢⎢⎢⎢⎣

19.8746 −6.1896 −8.5627 0.3180 −2.6575 −3.0581
−9.3089 20.8012 −1.6544 −1.0214 −6.2538 −0.9480
0.4434 −2.0612 20.7217 −4.9297 −3.3089 −3.5994

−3.5627 −1.0948 −2.2813 19.1590 −3.8287 −0.5291
−5.3609 −6.9847 −8.1804 −4.7676 20.3272 0.1498
9.2110 −5.3394 −6.3945 −11.5596 −12.0642 37.0734

⎤
⎥⎥⎥⎥⎥⎥⎦

is an Mv−matrix because the associated Bϕ is an eventually nonnegative matrix
(∀k ≥ 6, Bk ≥ 0).

In the last case we have to find particular conditions that guarantee theMv−property
of the Schur complement.
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MINIMAL HYPERSURFACES IN R4

THEODOROS KASIOUMIS

Abstract. We investigate complete minimal hypersurfaces f : M3 → R4,

with Gauss-Kronecker curvature identically zero and nowhere vanishing second
fundamental form. If the scalar curvature is bounded from below we prove that

f(M3) splits as a Euclidean product L2 × R, where L2 is a complete minimal

surface in R4 with Gaussian curvature bounded from below.

1. Some known definitions

Definition 1.1. Manifold of dimension k is a Hausdorff topological space, whose
topology has countable base, that is locally homeomorphic to Rk, by a collection
(called an atlas) of homeomorphisms called charts.

Figure 1
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Definition 1.2. A differentiable map f : Mn → M̃k is called immersion if at
every p ∈ Mn the differential dfp : TpM

n → Tf(p)M̃
k is 1-1. If in addition f is a

homeomorphism onto f(Mn) then f is called embedding.

Figure 2

Definition 1.3. An immersion f : (Mn, 〈·, ·〉) → (M̃k, 〈·, ·〉) is called isometric
immersion if 〈X,Y 〉M = 〈df(X), df(Y )〉M̃ for X,Y ∈ X(Mn).

Given an isometric immersion f we can construct more by composing with an
isometry of the ambient space. When we say that an isometric immersion is unique
we mean modulo isometries of the ambient space.

Definition 1.4. An isometric immersion f : Mn → Qk
c is called rigid if every

other isometric immersion g is a composition with an isometry T of the ambient
space, i.e, g = T ◦ f .

The second fundamental form αf : X(M) × X(M) → Γ(NfM) is a symmetric
billinear form defined as the difference

αf (X,Y ) =
(∇̃XY

)− (∇XY
)

where ∇̃ is the connection of the ambient space and ∇ the Levi-Civita connection
of M.

The corresponding self-adjoint linear tranformation of tangent space Aξ is called
shape operator and 〈αf (X,Y ), ξ〉 = 〈AξX,Y 〉 is the relationship between them.

Definition 1.5. The Gauss−Knonecker curvature is the determinant of the shape
operator, K = det(Aξ) and its trace H = trace(Aξ) is called mean curvature.

A hypersurface is called Minimal if H ≡ 0.

Definition 1.6. The curvature tensor is R : X(M)× X(M)× X(M) → X(M)

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

When the ambient space is a space of constant sectional curvature Qn
c the cur-

vature tensor becomes

R(X,Y )Z = c
(〈Y, Z〉X − 〈X,Z〉Y ).

If we pick an orthonormal frame {ei}, i = 1, . . . n on the tangent space of M we can
define the following curvatures:
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Definition 1.7.

Ric(X) =
n∑

i=1

〈R(ei, X)X, ei〉

τ(x) =
n∑

i=1

Ric(ei)

2. main results

Theorem 2.1. (Dajczer-Gromoll (1985)) Let g : Mn−k → Sn, n ≥ 4, be an
isometric immersion and γ ∈ C∞(M). Then the map Ψ : NgM → Rn defined as

Ψ(x,w) = γ(x)g(x) + dg(∇γ) + w,

on the open subest of regular points, is an immersed hypersurface of Rn+1 with
constant index of relative nullity k. Conversely, any hypersurface of Rn+1 with
constant index of relative nullity k can be parametrized this way, at least locally.

Theorem 2.2. (Dajczer - Gromoll (1985)) If f : Mn → Rn+1, n ≥ 4, is a minimal
isometric immersion of a complete Riemannian manifold Mn, then any other mini-
mal isometric immersion g : Mn → Rn+1 is congruent to f , i.e g = T ◦f where T is
an isometry of Rn+1, unless Mn splits as a Riemannian product Mn = L3×Rn−3.

Question (T. Hasanis-A. S. Halilaj-T. Vlachos):

Is it true that any complete minimal hypersurface with vanishing Gauss-Kronecker
curvature in R4 is a cylinder over a minimal surface in R3 ?

Before answering to the question, let us give an example on how to construct
minimal surfaces with vanishing Gauss-Kronecker curvature in R4.

Examples of Minimal surfaces in R4

Let g : M2 → R3 be a complete minimal surface and i : R3 → R4 the inclusion
map. Then the cylinder f : M2 × R → R4, f(x, t) = (i ◦ g)(x) + te4 is a complete
minimal hypersurface in R4.

Theorem 2.3. (T. Hasanis - A. S. Halilaj - T. Vlachos)(2005) The answer is pos-
itive under the assumption that the second fundamental form is nowhere vanishing
and the scalar curvature bounded from below.

An Idea of the Proof: Without loss of generality we may assume that M3 is
simply connected, after passing to the universal covering space. The standard mon-
odromy argument allows us to define a global orthonormal frame field {e1, e2, e3}
of principal directions. Consider the functions u = 〈∇e3e1, e2〉, v = e2(logλ), which
will play a crucial role in the proof of the Theorem. Using the structural equations
:

∇XY −∇Y X = [X,Y ],

[∇X ,∇Y ]Z −∇[X,Y ]Z = R(X,Y )Z,

see T. Hasanis- A. S. Halilaj-T. Vlachos and the Codazzi equation

(∇XAξ)Y −A∇⊥
XξY = (∇Y Aξ)X −A∇⊥

Y ξX,

we derive the following system :

e1(u) = e3(v), e3(u) = −e1(v)
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e2(u) = 2uv, e2(v) = v2 − u2

〈∇e2e1, e2〉 = 0, 〈∇e2e2, e3〉 = 0

[e1, e3] = −1

2
e3(logλ)e1 − 2ue2 +

1

2
e1(logλ)e3.

Calculating the Laplacian of u, v we deduce that u, v are harmonic functions.
Therefore

Δ(u2 + v2) ≥ 2(u2 + v2).

Furthermore, the Ricci curvature is bounded from below since by assumption the
scalar curvature is bounded from below. Now, using a result due to S. Y. Cheng,
S. T. Yau, we deduce that

sup(u2 + v2) = 0.

Consequently, λ is constant along the integral curves of e2. Consider the 2-dimensional
distribution V which is spanned by e1 and e3. Because u ≡ 0, we see that V is
involutive.

A result by T. Hasanis - A. S. Halilaj-T. Vlachos (2005).
Let L2

x be a maximal integral submanifold of V passing through a point x of M3,

and denote by i : L2
x → M3 its inclusion map. Then f̃ = f ◦ i : L2

x → R4 defines
and minimal surface with bounded Gaussian curvature which lies in R3 and df(e2)

is constant along f̃ . Hence f(M3) is a cylinder over a minimal surface of R3.

Question:
Can we construct a non totally geodesic, complete, minimal hypersurface with

bounded Gauss−Kronecker curvature exist in R4 ?

Question:
Can we construct a complete minimal hypersurface in R4 withGauss−Kronecker

curvature identically zero and scalar curvature not bounded from below ?
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DIFFERENCE AND ALGEBRAIC EQUATIONS

LAZAROS MOYSIS AND NICHOLAS KARAMPETAKIS

Abstract. Systems of linear difference and algebraic equations A(σ)β(k) = 0,

where σ denotes the shift forward operator and A(σ) a regular polynomial
matrix, give rise to both forward and backward propagating solutions. In the

present work the problem of constructing such a system is studied. That is,

given a set of discrete time forward and backward propagating functions β(k),
a method for constructing a family of matrices A(σ) is proposed, such that the

system A(σ)β(k) = 0 has the exact prescribed solutions.

1. Introduction

Let R be the field of reals, R [σ] the ring of polynomials with coefficients from R

and R(σ) the field of rational functions. By Rp×m[σ], Rp×m(s), Rp×m
pr (σ) we denote

the sets of p × m polynomial, rational and proper rational matrices respectively,
with real coefficients. We are going to study the behavior of systems of algebraic
and difference equations that are described in the form of an (Auto-Regressive)
AR-representation, that is

A(σ)β(k) = 0 (1.1)

with k = 0, 1, ..., N − q, or equivalently

Aqβ(k + q) +Aq−1β(k + q − 1) + ...+A0β(k) = 0 (1.2)

where β(k) ∈ Rr is the state of the system, σ denotes the forward shift operator
σβ(k) = β(k + 1) and

A(σ) = Aqσ
q +Aq−1σ

q−1 + ...+A1σ +A0 ∈ Rr×r[σ] (1.3)

is a regular polynomial matrix with det [A(σ)] �= 0 and Aq �= 0. The number q is
often called the lag of the matrix.

Such systems often appear in system theory, since they accurately model many
economic, biological and other discrete time phenomena. For example, the Leslie
Population Growth Model in biology and the Leontief Model of a multisector econ-
omy in economics [5] are both examples of singular systems, which are easily seen
to be a special case of AR systems (1.1).
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The solution space of such systems consists of both forward and backward solu-
tions and is denoted as

B := {β(k) : [0, N ] → Rr | (1.1) is satisfied ∀k ∈ [0, N − q]} (1.4)

The forward solution space, i.e. the vector space that consists of solutions β(k)
propagating forward in time (with given initial conditions) is connected to the finite
elementary divisor structure of A(σ). The backward solution space is the vector
space consisting of solutions β(k) propagating backward in time, (with given final
conditions), and it is connected to the infinite elementary divisor structure of A(σ).
The algebraic structure of polynomial matrices has been studied in [3, 6, 7, 8, 9,
10, 11, 14, 18]. Symbolic and numerical algorithms have also been developed for
the computation of the Jordan chains and the Smith form of polynomial matrices
in [20] and [21].

The construction of the solution space of such systems has been previously stud-
ied by various authors, initially in [8] and later in [1] whereas an extension of the
method in [8] to non regular systems is given in [12]. In this paper, we study the
inverse problem, that is: Given a certain forward/backward solution space, find
a system of algebraic/difference equations with the prescribed solution space. A
partial solution to this problem has been described in [8], where only the smooth
behavior for continuous time and the forward behavior for discrete time systems
was studied. This method was later extended in [13] for continuous time systems,
to include both the smooth and impulsive behavior and in [15] for discrete time
systems to include both the forward and backward behavior. Both these methods
though rely on the computation of the Jordan Pairs of A(σ) and cannot be ex-
tented to non-regular systems with the current theory. In addition, they are much
less versatile in handling the free parameters of the matrices A0, ..., Aq and require
a deep understanding of the structure of polynomial matrices.

In this paper, we shall further extend these results for the case where both a
forward and backward behavior is under consideration by using a novel methodol-
ogy. The core of our proposed method lies in the fact that the vectors that consist
a solution of the system (forward or backward), actually satisfy a certain system
of equations, which we are going to solve in terms of the unknown coefficients of
A(σ), in order to receive the original system. In each section examples are given to
showcase the results.

It should also be noted that the problem of constructing a system with prescribed
solutions has been studied in the field of behavioral theory by [2, 22, 23, 24, 25, 26],
although the approach used is completely different.

2. Preliminaries

In this section we provide some background regarding the algebraic structure of
polynomial matrices.

Definition 2.1. [19] A square polynomial matrix A(σ) ∈ R[σ]r×r is called uni-
modular if detA(σ) = c ∈ R, c �= 0. A rational matrix A(σ) ∈ Rr×r

pr (σ) is called

biproper if limσ→∞ A(σ) = E ∈ Rr×r with rankER = r.

Theorem 2.1. [19] Let A(σ) as in (1.3). There exist unimodular matrices UL(σ) ∈
R[σ]

r×r
,UR(σ) ∈ R[σ]

r×r
such that

SC

A(σ)(σ) = UL(σ)A(σ)UR(σ) = diag (1, ..., 1, fz(σ), fz+1(σ), ..., fr(σ)) (2.1)
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with 1 ≤ z ≤ r and fj(σ)/fj+1(σ) j = z, z + 1, ..., r. SC

A(σ)(σ) is called the Smith

form of A(σ) (in C) where fj(σ) ∈ R [σ] are the invariant polynomials of A(σ).
The zeros λi ∈ C of fj(σ), j = z, z+1, ..., r are called finite zeros of A(σ). Assume
that A(σ) has 	 distinct zeros. The partial multiplicities ni,j of each zero λi ∈ C,
i = 1, ..., 	 satisfy

0 ≤ ni,z ≤ ni,z+1 ≤ ... ≤ ni,r (2.2)

with

fj(σ) = (σ − λi)
ni,j f̂j(σ) (2.3)

j = z, ..., r and f̂j(λi) �= 0 The terms (σ − λi)
ni,j are called finite elementary

divisors of A(σ) at λi.
Denote by n the sum of the degrees of the finite elementary divisors of A(σ), i.e.

n := deg

⎡
⎣ r∏
j=z

fj(σ)

⎤
⎦ =

�∑
i=1

r∑
j=z

ni,j (2.4)

Similarly, we can find UL(σ) ∈ R(σ)r×r, UR(σ) ∈ R(σ)r×r having no poles and
zeros at σ = λ0 such that

Sλ0

A(σ)(σ) = UL(σ)A(σ)UR(σ) = diag (1, ..., 1, (σ − λ0)
nz , ..., (σ − λ0)

nr ) (2.5)

Sλ0

A(σ)(σ) is called the Smith form of A(σ) at the local point λ0.

Theorem 2.2. [19] Let A(σ) defined in (1.3). There exist biproper matrices
UL(σ) ∈ Rr×r

pr (σ), UR(σ) ∈ Rr×r
pr (σ) such that

UL(σ)A(σ)UR(σ) = S∞
A(σ)(σ) = diag

⎛
⎜⎜⎝σq1 , σq2 , ..., σqk︸ ︷︷ ︸

k

,

r−k︷ ︸︸ ︷
1

σq̂k+1
,

1

σq̂k+2
, ...,

1

σq̂r

⎞
⎟⎟⎠
(2.6)

with 1 ≤ k ≤ r, q1 ≥ . . . ≥ qk > 0 and q̂r ≥ q̂r−1 ≥ . . . q̂k+1 > 0. S∞
A(σ)(σ) is called

the Smith form of A(σ) at infinity. The first k terms σq1 , ..., σqk (resp. the latter
(r − k) terms σq̂k+1 , ..., σq̂r) are the poles (resp. zeros) at σ = ∞ of A(σ). It is
proved in [19] that q1 = q.

Definition 2.2. [19] The dual polynomial matrix of A(σ) is defined as

Ã(σ) := σqA(
1

σ
) = A0σ

q +A1σ
q−1 + ...+Aq (2.7)

Theorem 2.3. [19] Let Ã(σ) as in (2.7). There exist matrices ŨL(σ) ∈ R(σ)
r×r

,

ŨR(σ) ∈ R(σ)
r×r

having no poles or zeros at σ = 0, such that

S0
Ã(σ)

(σ) = ŨL(σ)Ã(σ)ŨR(σ) = diag [σμ1 , . . . , σμr ] (2.8)

S0
Ã(σ)

(σ) is the local Smith form of Ã(σ) at σ = 0. The terms σμj are the finite

elementary divisors of Ã(σ) at zero and are called the infinite elementary divisors
(i.e.d.) of A(σ).
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The connection between the Smith form at infinity of A(σ) and the Smith form
at zero of the dual matrix is given in [10, 19]:

S0
Ã(σ)

(σ) = diag

⎡
⎢⎣1, σq−q2 , . . . , σq−qk︸ ︷︷ ︸

i.p.e.d.

, σq+q̂k+1 , . . . , σq+q̂r︸ ︷︷ ︸
i.z.e.d.

⎤
⎥⎦ ≡ diag [σμ1 , σμ2 , . . . , σμr ]

(2.9)
where by i.p.e.d. and i.z.e.d. we denote the infinite pole and infinite zero elementary
divisors respectively. From the above formula it is seen that the the orders of the
infinite elementary divisors of A(σ) are given by

μ1 = q − q1
q=q1
= 0 (2.10a)

μj = q − qj j = 2, 3, ..., k (2.10b)

μj = q + q̂j j = k + 1, ..., r (2.10c)

We denote by μ the sum of the degrees of the infinite elementary divisors of A(σ)
i.e.

μ :=

r∑
j=1

μj (2.11)

Lemma 2.4. [1, 8, 19] Let A(σ) = Aqσ
q +Aq−1σ

q−1+ ...+A0 ∈ Rr×r[σ]. Let also
n, μ be the sum of degrees of the finite and infinite elementary divisors of A(σ), as
defined previously. Then

n+ μ = r × q (2.12)

The above relation is of fundamental importance in the sequel, since it connects
the dimension of the forward and backward behavior (n and μ respectively) of the
AR-representation (1.1) with the lag (q) and dimension (r) of A(σ).

3. Modeling the forward behavior of a system described by an

AR-Reresentation

In this section we present the forward behavior of (1.1) and propose a novel
method of constructing a system that satisfies a prescribed forward behavior.

3.1. Finite Elementary Divisors and Forward Solution Space. Let us as-
sume that A(σ) has 	 distinct zeros λ1, λ2, ..., λ� where for simplicity of notation
we assume that λi ∈ C, i = 1, 2, ..., 	 and let SC

A(σ)(σ) = UL(σ)A(σ)UR(σ) =

blockdiag [1, ..., 1, fz(σ), fz+1(σ), ..., fr(σ)]. Assume that the partial multiplicities

of the zeros λi ∈ C are 0 ≤ ni,z ≤ ni,z+1 ≤ ... ≤ ni,r i.e. fj(σ) = (σ − λi)
ni,j f̂j(σ)

j = z, z + 1, ..., r with f̂j(λi) �= 0. Let uj(σ) ∈ R[σ]
r×1

, be the columns of UR(σ)

and u
(ϕ)
j (σ) := (∂ϕ/∂σϕ)uj(σ). Let also

βi
j,ϕ := 1

ϕ!u
(ϕ)
j (λi) i = 1, 2, ..., 	 j = z, z + 1, . . . , r ϕ = 0, 1, ..., ni,j − 1 (3.1)

Define the vector valued functions

βi
j,ϕ(k) := λk

i β
i
j,ϕ + kλk−1

i βi
j,ϕ−1 + ...+

(
k
ϕ

)
λk−ϕ
i βi

j,0 for λi �= 0 (3.2a)

βi
j,ϕ(k) := δ(k)βi

j,ϕ + δ(k − 1)βi
j,ϕ−1 + ...+ δ(k − ϕ)βi

j,0 for λi = 0 (3.2b)

where i = 1, 2, ..., 	, j = z, z + 1, . . . , r, ϕ = 0, 1, ..., ni,j − 1 and δ(k) or δk denotes
the known Kronecker delta function.



DIFFERENCE AND ALGEBRAIC EQUATIONS 35

Theorem 3.1. [12] The vector valued functions βi
j,φ(k), as defined in (3.2), are

solutions of (1.1). In addition, let

Ci,j :=
[
βi
j,0 βi

j,1 ... βi
j,ni,j−2 βi

j,ni,j−1

]
(3.3)

Ji,j :=

⎡
⎢⎢⎢⎢⎣

λi 1 ... 0

0 λi
. . .

...
...

. . .
. . . 1

0 ... 0 λi

⎤
⎥⎥⎥⎥⎦ ∈ Rni,j×ni,j (3.4)

where i = 1, 2, ..., 	, j = z, z + 1, . . . , r and

CF
i :=

[
Ci,z Ci,z+1 · · · Ci,r

]
; JF

i := blockdiag
[
Ji,z · · · Ji,r

]
(3.5)

Finally let

CD
F :=

[
CF

1 · · · CF
�

]
; JD

F := blockdiag
[
JF
1 · · · JF

�

]
(3.6)

The forward solution space of the system (1.1) is spanned by the columns of:

BD
F =

〈
CD

F

(
JD
F

)k〉
(3.7)

and has dimension dimBD
F = n, where n is defined in (2.4).

Theorem 3.2. The vector valued functions βi
j,ϕ(k) defined in (3.2), are solutions

of (1.1) iff the vectors βi
j,ϕ satisfy the following system of equations:

A(λi)β
i
j,0 = 0

A(1)(λi)β
i
j,0+A(λi)β

i
j,1 = 0

...

1

(ni,j − 1)!
A(ni,j−1)(λi)β

i
j,0+ · · ·+A(λi)β

i
j,(ni,j−1) = 0

(3.8)

Proof. We show that βi
j,ϕ(k) are solutions of (1.1) iff (3.8) are satisfied. First,

consider the general case where λi �= 0. For βi
j,0(k) = λk

i β
i
j,0, we have:

A(σ)λk
i β

i
j,0 = 0 ⇔ (3.9)

Aqλ
k+q
i βi

j,0 + ...+A1λ
k+1
i βi

j,0 +A0λ
k
i β

i
j,0 = 0 ⇔ (3.10)

(Aqλ
q
i + ...+A1λi +A0)λ

k
i β

i
j,0 = 0 ⇔ (3.11)

A(λi)β
i
j,0 = 0 (3.12)

so the first equation in (3.8) is proven. Now, letting βi
j,1(k) = kλk−1

i βi
j,0 + λk

i β
i
j,1,

we obtain:

A(σ)(kλk−1
i βi

j,0 + λk
i β

i
j,1) = 0 ⇔(

Aq(k + q)λk+q−1
i βi

j,0 + ...+A0kλ
k−1
i βi

j,0

)
+
(
Aqλ

k+q
i βi

j,1 + ...+A0λ
k
i β

i
j,1

)
= 0 ⇔(

qAqλ
q−1
i + ...+A1

)
λk
i β

i
j,0 + (Aqλ

q
i + ...+A1λi +A0)kλ

k
i β

i
j,0+

+(Aqλ
q
i + ...+A1λi +A0)λ

k
i β

i
j,1 = 0

and taking into account that A(λi)β
i
j,0 = 0 and (3.11), the above equation is written

as (
qAqλ

q−1
i + ...+A1

)
λk
i β

i
j,0 + (Aqλ

q
i + ...+A1λi +A0)λ

k
i β

i
j,1 = 0 ⇔
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qAqλ

q−1
i + ...+A1

)
βi
j,0 + (Aqλ

q
i + ...+A1λi +A0)β

i
j,1

)
λk
i = 0 ⇔

A(1)(λi)β
i
j,0 +A(λi)β

i
j,1 = 0 (3.13)

so the second equation in (3.8) holds true. Continuing inductively in the same
fashion, the rest of the equations in (3.8) can be proven.

For the case where λi = 0, letting βi
j,0(k) = δ(k)βi

j,0 we obtain:

A(σ)δ(k)βi
j,0 = 0 ⇔

Aqδ(k + q)βi
j,0 + ...+A1δ(k + 1)βi

j,0 +A0δ(k)β
i
j,0 = 0

and for k = 0 this equation becomes A0β
i
j,0 = A(0)βi

j,0 = 0. Now, letting βi
j,1(k) =

δ(k)βi
j,1 + δ(k − 1)βi

j,0 we obtain:

A(σ)(δ(k)βi
j,1 + δ(k − 1)βi

j,0) = 0 ⇔
Aqδ(k + q)βi

j,1 + ...+A0δ(k)β
i
j,1 +Aqδ(k + q − 1)βi

j,0 + ...+A0δ(k − 1)βi
j,0 = 0

which for k = 0 yields A1β
i
j,0 +A0β

i
j,1 = A(1)(0)βi

j,0 +A(0)βi
j,1 = 0. Continuing in

the same fashion, the rest of the equations in (3.8) can be proven for λi = 0. �

The system of equations (3.8) can be rewritten in matrix form as

(
A(ni,j−1)(λi)

(ni,j−1)! · · · A(λi)
)⎛⎜⎝

βi
j,0 · · · 0
...

. . .
...

βi
j,(ni,j−1) · · · βi

j,0

⎞
⎟⎠

︸ ︷︷ ︸
Wi,j

= 0r×ni,j
(3.14)

for i = 1, 2, ..., 	, j = z, z + 1, . . . , r and Wi,j ∈ Rrni,j×ni,j .

3.2. Construction of a system with given forward behavior. Theorem 3.2
is important, since it states that in order for a time sequence (3.2) to be a solution
of A(σ)β(k) = 0, the vectors βi

j,ϕ need to satisfy (3.14). Solving the above system
of equations by calculating the left kernel of Wi,j , we can obtain the matrices,
A(ni,j−1)(λi) ..., A

′(λi), A(λi), that represent the values of A(σ) and its derivatives
at λi. Thus the evaluation of A(σ) is reduced to a Hermite interpolation problem.
Alternatively, using the relation

A(ε)(λi)

ε!
=

(
q

ε

)
Aqλi

q−ε + · · ·+
(
ε+ 1

ε

)
Aε+1λi +

(
ε

ε

)
Aε ⇒

A(ε)(λi)

ε!
=
(
Aq · · · Aε

)⎛⎜⎝
(
q
ε

)
λi

q−εIr
...
Ir

⎞
⎟⎠

for ε = 0, ..., ni,j − 1 we rewrite (3.14) as follows:(
Aq · · · A0

)
Qi,jWi,j = 0r×ni,j

(3.15)
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where

Qi,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
q

ni,j−1

)
λi

q−(ni,j−1)Ir · · · λi
qIr

...
. . .

...(
ni,j

ni,j−1

)
λiIr

(
ridx
cidx

)
λi

ridx−cidxIr
...

Ir
. . . λi

2Ir
...

. . . λiIr
0 · · · Ir

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Rr(q+1)×rni,j

(3.16)
with i = 1, 2, ..., 	, j = z, z + 1, . . . , r and ridx = 0, ..., q, cidx = 0, ..., (ni,j − 1) the
row and column indexes, counting from right to left and bottom to top.

In case where ni,j > q, the derivatives of A(σ) of order higher than q in (3.14)
will be equal to zero. In this case, the matrices Qi,j ,Wi,j in (3.15) take the following
simplified form

(
Aq · · · A0

)
⎛
⎜⎝
Ir · · · λq

i Ir
...

. . .
...

0 · · · Ir

⎞
⎟⎠

⎛
⎜⎝
βi
j,ni,j−q−1 · · · βi

j,0

...
. . .

βi
j,ni,j−1 · · · · · · βi

j,0

⎞
⎟⎠ = 0r×ni,j (3.17)

Thus, our problem has been reduced to a linear system equation problem. That
is, given a time sequence in the form of βi

j,ϕ(k), we can solve (3.15) in terms of the
unknowns A0, A1, ..., Aq in order to construct A(σ). For the solution of such linear
systems, numerous numerical methods exist. The most commonly used are Singular
Value Decomposition (SVD) and the QR Decomposition [17]. These results give rise
to the following algorithm for the construction of a system that satisfies a desired
forward behavior.

Algorithm 3.1. Suppose that a finite number of 	 vector functions of the form

βF
j,i(k) = λk

i β
i
j,ni,j−1 + · · ·+

(
k

ni,j − 1

)
λ
k−(ni,j−1)
i βi

j,0 (3.18)

βF
j,i(k) = δ(k)βj,ni,j−1 + ...+ δ (k − (ni,j − 1))βj,0 (3.19)

are given, with i = 1, 2, ..., 	 j = z, z + 1, . . . , r.

Step 1: Define n =
�∑

i=1

r∑
j=z

nij.

If r/n, then

q =
n

r
else

q = [
n

r
] + 1

end if
Step 2: Construct the matrices Qi,j ,Wi,j, defined in (3.14) and (3.16).
Step 3: Construct the combined matrices

Qi =
(
Qi,z · · · Qi,r

) ∈ Rr(q+1)×rni

Wi =
(
Wi,z · · · Wi,r

) ∈ Rrni×ni
i = 1, ..., 	 (3.20)

where ni =
∑r

j=z ni,j and

Q =
(
Q1 · · · Q�

) ∈ R(q+1)r×nr (3.21)
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W = blockdiag
(
W1 · · · W�

) ∈ Rnr×n (3.22)

Step 4: Solve the system of equations(
Aq · · · A0

)
QW = 0r×n (3.23)

in terms of the unknown matrices Ai.
Step 5: Choose the free entries aij of each matrix Ai so that det [A(σ)] �= 0.

Remark 3.3. In case where in Step 1, there exists no q such that n = rq, the
resulting matrix A(σ) will describe a system of algebraic/difference equations with
βF
i (k) as part of its solution space, which will include additional vector functions

linearly independent from βF
i (k). (This holds true for all the algorithms presented

in this paper.)

Remark 3.4. Every matrix that is unimodular equivalent to the polynomial matrix
A(σ) constructed in Algorithm 3.1 gives rise to a model with exactly the same
forward behavior with (1.1). That is, all matrices

A1(σ) = U(σ)A(σ) (3.24)

where U(σ) is unimodular satisfy A1(σ)βj,i(k) = 0.

4. Modeling the backward behavior of a system described by an

AR-Reresentation

In this section we present the backward solution of (1.1) and propose a method
of constructing a system that satisfies it.

4.1. Infinite elementary divisors and backward solution space. Let

S0
Ã(σ)

(σ) = ŨL(σ)Ã(σ)ŨR(σ) = blockdiag [σμ1 , ..., σμr ]

be the Smith form of Ã(σ) at zero. Let also ŨR(σ) =
[
ũ1(σ) · · · ũr(σ)

]
where

ũj(σ) ∈ R(σ)
r×1

and ũ
(i)
j (σ), Ã(i)(σ) be the i-th derivatives of ũj(σ) and Ã(σ)

respectively, for i = 0, 1, ..., μj − 1 and j = 2, ..., r (since μ1 = 0). Let

xj,i :=
1
i! ũ

(i)
j (0) i = 0, 1, ..., μj − 1 j = 2, ..., r (4.1)

and define the vector valued functions

βB
j,φ(k) := xj,φδ(N − k) + ...+ xj,0δ(N − (k + φ)) (4.2)

where j = 2, ..., r, φ = 0, ..., μj − 1.

Theorem 4.1. [12] The vector valued functions βB
j,φ(k) defined in (4.2) are solu-

tions of (1.1). In addition, let

CB
j =

[
xj,0 xj,1 · · · xj,μj−1

] ∈ Rr×μj (4.3)

JB
j :=

⎛
⎜⎜⎜⎜⎝
0 1 · · · 0

0 0
. . .

...
...

. . .
. . . 1

0 · · · 0 0

⎞
⎟⎟⎟⎟⎠ ∈ Rμj×μj (4.4)

and

CD
B :=

[
CD

2 · · · CD
r

]
, JD

B := blockdiag
[
JD
2 · · · JD

r

]
(4.5)
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The backward solution space of (1.1) is spanned by the columns of:

BD
B =

〈
CD

B

(
JD
B

)N−k
〉

(4.6)

and has dimension dimBD
B = μ, where μ is defined in (2.11).

4.2. Construction of a system with given backward behavior.

Theorem 4.2. The vector valued functions βB
j,φ(k) defined in (4.2), are solutions

of (1.1) iff the vectors xj,i in (4.1) satisfy the system of equations:

Aqxj,0 = 0

Aq−1xj,0 +Aqxj,1 = 0

...

A0xj,0 +A1xx,1 + ...+Aqxj,q = 0 j = k + 1, ..., r (4.7a)

...

A0xj,q̂j−1 +A1xj,q̂j + ...+Aqxj,q+q̂j−1 = 0

for the case of infinite zero elementary divisors (i.z.e.d.), i.e. μj, j = k + 1, ..., r,
or

Aqxj,0 = 0

Aq−1xj,0 +Aqxj,1 = 0

... j = 2, ..., k (4.7b)

Aqj+1xj,0 + ...+Aqxj,q−qj−1 = 0

for the case of infinite pole elementary divisors (i.p.e.d), i.e. μj, j = 2, ..., k (see
(2.9)).

Proof. We show that βB
j,φ(k) are solutions of (1.1) iff (4.7) are satisfied. For

βB
j,0(k) = xj,0δ(N − k) we have:

A(σ)xj,0δ(N − k) = 0 ⇒
Aqδ(N − k − q)xj,0 + ...+A1δ(N − k − 1)xj,0 +A0δ(N − k)xj,0 = 0

and since (1.1) is satisfied for k ∈ [0, N − k], setting k = N − q we obtain

Aqxj,0 = 0

so the first equation in (4.7) is proven. Now, letting βB
j,1(k) = xj,1δ(N − k) +

xj,0δ(N − k − 1), we obtain

A(σ) (xj,1δ(N − k) + xj,0δ(N − k − 1)) = 0 ⇒
Aqδ(N − k − q)xj,1 + ...+A0δ(N − k)xj,1+

+Aqδ(N − k − q − 1)xj,0 +Aq−1δ(N − k − q)xj,0 + ...+A0δ(N − k − 1)xj,0 = 0

Again, taking k = N − q, we get

Aq−1xj,0 +Aqxj,1 = 0

so the second equation in (4.7) holds true. Continuing in the same fashion, the rest
of the equations in (4.7) can be proven, either for the case of i.z.e.d. or for the case
of i.p.e.d. �
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Equations (4.7a) and (4.7b) can be rewritten as

(
Aq · · · A0

)
⎛
⎜⎜⎜⎜⎝
xj,0 xj,1 · · · xj,q · · · xj,q+q̂j−1

0 xj,0 · · · ...
...

...
...

. . . · · · ...
...

...
0 · · · 0 xj,0 · · · xj,q̂j−1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
QBz

j

= 0r×(q+q̂j) (4.8a)

with QBz
j ∈ Rr(q+1)×(q+q̂j), for the case of i.z.e.d. (j = k + 1, ..., r) and

(
Aq · · · Aqj+1

)
⎛
⎜⎜⎜⎜⎝
xj,0 xj,1 · · · xj,q−qj−1

0 xj,0 · · · ...
...

. . . · · · ...
0 · · · 0 xj,0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Q

Bp
j

= 0r×(q−qj) (4.8b)

Q
Bp

j ∈ Rr(q+1)×(q−qj), for the case of i.p.e.d. (j = 2, ..., k).
Theorem 4.2 is important, because it states that in order for a vector valued

function (4.2) to be a solution of A(σ)β(k) = 0, the vectors xj,i need to satisfy (4.8).
This system of equations can be used to solve the inverse problem. That is, given
a time sequence in the form of βB

j,φ(k), we can solve the system of linear equations

(4.8) in terms of the unknown matrices A0, A1, ..., Aq and therefore construct the
AR-Representation (1.1). These results give rise to the following algorithm for the
construction of a system that satisfies a desired backward behavior.

Algorithm 4.1. Suppose that a finite number of functions of the form

βB
j,φ(k) := xj,φδ(N − k) + ...+ xj,0δ(N − (k + φ)) (4.9)

are given, where j = 2, ..., r, φ = 0, ..., μj − 1.

Step 1: Define μ :=
r∑

j=2

μj.

If r/μ, then

q =
μ

r
else

q = [
μ

r
] + 1

end if

Step 2: Construct the matrices QBz
j and/or Q

Bp

j defined in (4.8).
Step 3: Construct the matrix

QB =
(
QB

2 · · · QB
r

) ∈ Rr(q+1)×μ (4.10)

that can be a combination of the matrices QBz
j and Q

Bp

j , depending on the

form of βB
j,i(k) that are given.

Step 4: Solve the system of equations(
Aq · · · A0

)
QB = 0r×μ (4.11a)
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or (
Aq · · · Aqk+1

)
QB = 0r×μ (4.11b)

in terms of the unknown matrices Ai.
Step 5: Choose the free entries aij of each matrix Ai so that det [A(σ)] �= 0.

From the connection between the Smith form at infinity of A(σ) and the Smith

form at zero of the dual matrix Ã(σ) in (2.9), it can be seen that the infinite
elementary divisors of A(σ), that generate the backward solutions of (1.1), are
connected to the finite elementary divisors of the dual matrix at λ = 0, that in turn
generate forward solutions for the dual system Ã(σ)β(k) = 0. More specifically,
in [15] the connection between these two behaviors was explicitly given by the
following theorem.

Theorem 4.3. [15] The vector valued functions βB
j,φ(k) defined in (4.2) are solu-

tions of (1.1) iff the vector functions

β̃j,φ(k) = xj,0δ(k − φ) + · · ·+ xj,φδ(k) (4.12)

where j = 2, ..., r, φ = 0, ..., μj − 1, are solutions of the dual system Ã(σ)β(k) = 0.

Under the above consideration that the backward solutions of (1.1) give rise
to forward solutions of its dual system, Remark 3.4 can also be applied here, as
follows.

Remark 4.4. Every polynomial matrix A1(σ) whose dual is unimodular equivalent
to the dual of the polynomial matrix A(σ) constructed in Algorithm 4.1 gives rise to
a model with exactly the same backward behavior with (1.1). That is, all matrices
A1(σ) such that:

Ã1(σ) = U(σ)Ã(σ) (4.13)

where U(σ) is unimodular satisfy A1(σ)β
B
j,φ(k) = 0.

5. Modeling a System with a Prescribed Forward and Backward

Behavior

So far we have provided methods for constructing a system that satisfies a desired
forward or backward behavior. Since these methods are functional, we can com-
bine them to give a solution to the general inverse problem. Construct a system
of algebraic/difference equations that satisfies a desired forward and a backward
behavior. The answer is simple; we can just solve both systems (3.23) and (4.11)
and find a solution that satisfies both. As a result, the system produced will have
a solution space spanned by the given vector valued functions. These results give
rise to the following algorithm.

Algorithm 5.1. Suppose that a finite number of functions of the form

βF
j,i(k) = λk

i β
i
j,ni,j−1 + · · ·+

(
k

ni,j − 1

)
λ
k−(ni,j−1)
i βi

j,0 (5.1)

βF
j,i(k) = δ(k)βj,ni,j−1 + ...+ δ (k − (ni,j − 1))βj,0 (5.2)

βB
j (k) := xj,μj−1δ(N − k) + ...+ xj,0δ(N − (k + i)) (5.3)

are given.
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Step 1: Define n =
�∑

i=1

r∑
j=z

nij and μ :=
r∑

j=2

μj.

If r/(n+ μ), then

q =
n+ μ

r

else

q = [
n+ μ

r
] + 1

end if
Step 2: Construct the matrices Q and W defined in (3.21), (3.22), according to

Algorithm 3.1 and QB defined in (4.10), according to Algorithm 4.1.
Step 3: Solve the system of equations(

Aq · · · A0

)
QW = 0r×n

AND (5.4)(
Aq · · · A0

)
QB = 0r×μ

in terms of the unknown matrices Ai.
Step 4: Choose the free entries aij of each matrix Ai so that det [A(σ)] �= 0.

Combining the results of Remarks 3.4 and 4.4, we conclude to the following.

Remark 5.1. Every polynomial matrix A1(σ) which is unimodular equivalent to the

polynomial matrix A(σ) constructed in Algorithm 5.1 and its dual matrix Ã1(σ) is

unimodular equivalent to Ã(σ), gives rise to a model with exactly the same forward
and backward behavior.

Example 5.2. Let the following vector functions

β1(k) =

(
1
1

)
︸ ︷︷ ︸

β11

+

(
3
1

)
︸ ︷︷ ︸

β10

k β2(k) =

(
2
0

)
︸ ︷︷ ︸

β21

2k +

(
4
1

)
︸ ︷︷ ︸

β20

k2k−1

β3(k) =

( −1
0

)
︸ ︷︷ ︸

x33

δ(N− k) +

( −1
−1

)
︸ ︷︷ ︸

x32

δ(N− k − 1) +

+

(
1
1

)
︸ ︷︷ ︸

x31

δ(N− k − 2) +

(
1
0

)
︸ ︷︷ ︸

x30

δ(N− k − 3)

We want to construct an AR-representation A(σ)β(k) = 0 that has the prescribed
functions in its solution space.

Step 1: Since μ = μ1 +μ2 = 0+μ2 = 4, n = n1 +n2 = 2+2 = 4 and r = 2, from
(2.12) we have

n+ μ = 4 + 4 = 8 = rq ⇒
q = 4 (5.5)

So

A(σ) = A4σ
4 +A3σ

3 +A2σ
2 +A1σ +A0 ∈ R2×2[σ] (5.6)
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Step 2: From the coefficients of β1(k) and β2(k), construct the matrices

Qi =

⎛
⎜⎜⎜⎜⎝

4λi
3I2 λi

4I2
3λi

2I2 λi
3I2

2λiI2 λi
2I2

I2 λiI2
02 I2

⎞
⎟⎟⎟⎟⎠ Wi =

(
βi0 0
βi1 βi0

)
i = 1, 2 (5.7)

and combine them

Q =
(
Q1 Q2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 1 0 32 0 16 0
0 4 0 1 0 32 0 16
3 0 1 0 12 0 8 0
0 3 0 1 0 12 0 8
2 0 1 0 4 0 4 0
0 2 0 1 0 4 0 4
1 0 1 0 1 0 2 0
0 1 0 1 0 1 0 2
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.8)

W =

(
W1 0
0 W2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0
1 0 0 0
1 3 0 0
1 1 0 0
0 0 4 0
0 0 1 0
0 0 2 4
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.9)

From the coefficients of β3(k), since q = 4 and μ1 = 0, we have that μ2

corresponds either to an infinite pole or an infinite zero elementary divisor.
So, either

μ2 = q − q2 = 4 ⇒ 4− q2 = 4 ⇒ q2 = 0 (5.10)

or

μ2 = q + q2 = 4 ⇒ 4 + q2 = 4 ⇒ q2 = 0 (5.11)

which is also accepted. But in order for the matrix dimensions to agree, we
will use (4.11b).

QB =

⎛
⎜⎜⎝

x30 x31 x32 x33

0 x30 x31 x32

0 0 x30 x31

0 0 0 x30

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 −1
0 1 −1 0
0 1 1 −1
0 0 1 −1
0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.12)

Step 3 & 4: Solving the system(
A4 A3 A2 A1 A0

)
QW = 02×4 (5.13)(

A4 A3 A2 A1

)
QB = 02×4 (5.14)
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and choosing values for the parameters of the matrices Ai, so that detA(s) �=
0, we end up with

A(σ) =

(
3
5 − 11σ

5 + 2σ2 − 3σ3

5 2σ − 6σ2

5 − 4σ3

5 + 3σ4

5
1
10 − 29σ

20 + 7σ2

4 − 3σ3

5 1 + σ − 29σ2

20 − 11σ3

20 + 3σ4

5

)
(5.15)

Note that the Smith forms of A(σ) at C and its dual matrix at zero are

SC

A(σ)(σ) =

(
1 0
0 (σ − 1)2(σ − 2)2

)
S0
Ã(σ)

(σ) =

(
1 0
0 σ4

)
(5.16)

It is easily checked that the vector functions βi(k), i = 1, 2, 3 are solutions of the
system, i.e. A(σ)βi(k) = 0. Again, we can find a polynomial matrix B(σ) and
unimodular matrices U(σ), V (σ) such that

A1(σ) = U(σ)A(σ) (5.17)

Ã1(σ) = V (σ)Ã(σ) (5.18)

so that A1(σ) satisfies A(σ)βi(k) = 0. An example is the matrix

A1(σ) =

(
7
10 − 73σ

20 + 15σ2

4 − 6σ3

5 1 + 3σ − 53σ2

20 − 27σ3

20 + 6σ4

5
13
10 − 117σ

20 + 23σ2

4 − 9σ3

5 1 + 5σ − 77σ2

20 − 43σ3

20 + 9σ4

5

)
(5.19)

with

U(σ) = U = V (σ) = V =

(
1 1
2 1

)
(5.20)

6. Notes on the Power of a model

The notion of power in modeling has been introduced by [22] and later studied
in [24, 25, 26]. The power of a model is defined as the ability of the constructed
model (i.e. the AR-representation) to describe the given behavior, i.e. the given
data, but as little else as possible. So if we define as B the behavior of the system
we have constructed, i.e. the complete set of vector valued functions that satisfy it:

B = {w : N → Rn|A(σ)w(k) = 0} (6.1)

or equivalently
B = kerA(σ) (6.2)

we do not simply desire this behavior to include the given functions. This should
obviously be the aim of the modelling procedure, but the optimal goal for the
contructed model is to have no other behavior, linearly independent from the pre-
scribed. So for any other model with behavior B1 we want

{B more powerful than B1} ⇔ {B ⊆ B1} (6.3)

Now, as mentioned previously, for a given number of vector valued functions, the
system created by the proposed algorithms may still include extra forward/backward
behavior if equation n + μ = rq is not satisfied. In this case the system model is
not the most powerful model (and no such model can be created for a square and
regular system matrix). These facts give rise to the following theorem.

Remark 6.1. Given the following vector valued functions

βF
j,i(k) = λk

i β
i
j,ni,j−1 + · · ·+

(
k

ni,j − 1

)
λ
k−(ni,j−1)
i βi

j,0 (6.4)

βF
j,i(k) = δ(k)βj,ni,j−1 + ...+ δ (k − (ni,j − 1))βj,0 (6.5)



DIFFERENCE AND ALGEBRAIC EQUATIONS 45

βB
j (k) := xj,μj−1δ(N − k) + ...+ xj,0δ(N − (k + i)) (6.6)

let n =
�∑

i=1

r∑
j=z

nij and μ :=
r∑

j=2

μj.

The system A(σ)β(k) = 0 constructed by the proposed Algorithm 5.1, correspond-
ing to the behavior B = kerA(σ) is the most powerful model that describes the above
vector valued functions iff ∃ q ∈ N such that

n+ μ = rq (6.7)

If this is not the case, then choosing q = [n+μ
r ] + 1 in Algorithm 5.1, results in

n + μ < rq and so the behavior of the system includes to rq − n − μ additional
solutions, since the dimension of the solution space is always equal to rq.

An example where the constructed system is not the most powerful model is
given below.

Example 6.2. Let the following vector valued functions

β1(k) =

(
2
3

)
︸ ︷︷ ︸

β12

2k +

(
4
1

)
︸ ︷︷ ︸

β11

k2k−1 +

(
2
0

)
︸ ︷︷ ︸

β10

k(k − 1)

2
2k−2

We want to construct an AR-representation A(σ)β(k) = 0 that has the prescribed
functions in its solution space.

Step 1: Since n = n1 = 3, μ = 0 and r = 2, from (2.12) we have n + 0 = 2q ⇒
q = 3/2. So set q = [ 32 ] + 1 = 2 and we have

A(σ) = A2σ
2 +A1σ +A0 ∈ R2×2[σ] (6.8)

Step 2: Construct the matrices Q1 and W1:

Q1 =

⎛
⎝ I2 2 · 2I2 22I2

0 I2 2I2
0 0 I2

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 4 0 4 0
0 1 0 4 0 4
0 0 1 0 2 0
0 0 0 1 0 2
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (6.9)

W1 =

⎛
⎝ β10 0 0

β11 β10 0
β12 β11 β10

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0
0 0 0
4 2 0
1 0 0
2 4 2
3 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (6.10)

Step 4: Solve the system(
A2 A1 A0

)
Q1W1 = 02×3 (6.11)

where

Ai =

(
ai1 ai2
ai3 ai4

)
(6.12)

Step 5: The matrices that we end up with are

A0 =

(−a02 − 4(a12 + 3a22) a02
−a04 − 4(a14 + 3a24) a04

)
(6.13)
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A1 =

(
3
2a02 + 5a12 + 14a22 a12
3
2a04 + 5a14 + 14a24 a14

)
(6.14)

A2 =

(
1
2 (−a02 − 3a12 − 8a22) a22
1
2 (−a04 − 3a14 − 8a24) a24

)
(6.15)

and the matrix A(σ) has a determinant

detA(σ) =

(σ− 2)3(a04a12−a02a14 +3(a04a22 − a02a24)+(a04a22+3a14a22 − a02a24− 3a12a24)σ)

which is a polynomial of degree equal to 4 = rq = 2 · 2. So it is obvious that
the matrix has an extra zero and thus an extra solution, as it was expected, since
rq − n− μ = 4− 3 = 1.

For example, by choosing a22 = a12 = a02 = 1, a14 = a24 = 0, a04 = 2 we get
the matrix

A(σ) =

(−17 + 41σ
2 − 6σ2 1 + σ + σ2

−2 + 3σ − σ2 2

)
(6.16)

with Smith form

SC

A(σ)(σ) =

(
1 0
0 (σ + 4)(σ − 2)3

)
(6.17)

So A(σ) has an additional finite elementary divisor, i.e. (σ+4). So for this matrix
the new number of f.e.d and i.e.d. is n′ = 4 and μ = 0. Following the procedure
described in Subsection 3.1, we find that this divisor gives rise to the solution

β2(k) =

(
1
15

)
(−4)k (6.18)

which is linearly independent from β1(k).
On the other hand, one may assume that by choosing the appropriate values of the

free parameters in order to eliminate the coefficient of σ in the extra polynomial of
the determinant, while still keeping detA(σ) �= 0, will give a simple solution to the
problem of undesired behavior. This is not the case, since this will lead to undesired
backward behavior. For example, by choosing a12 = 1, a02 = a14 = a22 = a24 = 0,
a04 = 2 we get

A(σ) =

(
−4 + 5σ − 3σ2

2 σ
−2 + 3σ − σ2 2

)
(6.19)

with

SC

A(σ)(σ) =

(
1 0
0 (σ − 2)3

)
S0
Ã(σ)

(σ) =

(
1 0
0 σ

)
(6.20)

The Smith form of the dual matrix at σ = 0 implies that in this case the matrix
A(σ) has an additional infinite elementary divisor, so here we have n′ = 3 and
μ′ = 1. The existence of an infinite elementary divisor implies the existence of
additional backward behavior for the above system. Thus, we see that no matter
what the values of the free variables aij will be, the system will exhibit additional
behavior.

As an alternative, one may proceed to construct a non-regular system that sat-
isfies the prescribed behavior, i.e. a system with A(σ) ∈ Rr×m and n �= m or with
A(σ) ∈ Rr×r and detA(σ) = 0.



DIFFERENCE AND ALGEBRAIC EQUATIONS 47

Step 1: Under the assumption that the constructed system can be non-square, tak-
ing r=1 and n=3, we find n = rq ⇒ q = 3 (see also [16]). So

A(σ) = A3σ
3 +A2σ

2 +A1σ +A0 ∈ R1×2[σ] (6.21)

Step 2: For the above system, the matrix W1 remains the same, while Q1 is

Q1 =

⎛
⎜⎜⎝
3 · 2I2 3 · 22I2 23I2
I2 2 · 2I2 22I2
0 I2 2I2
0 0 I2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 0 12 0 8 0
0 6 0 12 0 8
1 0 4 0 4 0
0 1 0 4 0 4
0 0 1 0 2 0
0 0 0 1 0 2
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.22)

Step 4: Solve the system(
A3 A2 A1 A0

)
Q1W1 = 01×3 (6.23)

where

Ai =
(
ai1 ai2

)
(6.24)

Step 5: The matrices that we end up with are

A0 =
(−a02 − 4a12 − 12a22 − 8a31 − 32a32 a02

)
(6.25)

A1 =
(
3a02

2 + 5a12 + 14a22 + 12a31 + 36a32 a12
)

(6.26)

A2 =
(−a02

2 − 3a12

2 − 4a22 − 6a31 − 10a32 a22
)

(6.27)

A3 =
(
a31 a32

)
(6.28)

and the constructed matrix A(σ) satisfies A(σ)β(k) = 0. What must be
noted though is that since this procedure has led to the construction of a
non-regular system, the solutions βi(k) of the system could be attributed to
either its f.e.d. structure or its right null space. Indeed, the matrix A(σ)
has a Smith form

SC

A(σ)(σ) =
(
1 0

)
(6.29)

That it, as [12] demonstrates, non-regular systems exhibit an infinite
number of forward and backward solutions due to the right null space of
A(σ). So in this case, the constructed system will include additional behav-
ior that is undesired.

7. Conclusions

A novel method has been proposed for constructing an AR-Representation that
satisfies a prescribed forward and backward behavior, given in the form of vector
valued functions. It was shown (see Example 6.2) that this method can also be used
to construct non-regular systems. Thus, the proposed method is more versatile
than previous ones for continuous or discrete time systems (see [8, 13, 15]) that
only worked for square matrices. The results presented in this work can also be
used with minor adjustments to the case of continuous time systems, where smooth
and impulsive behaviors are of interest.
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A DYNAMIC MODEL FOR HIV INFECTION

LAZAROS MOYSIS1, IOANNIS KAFETZIS1, AND MARIOS POLITIS

Abstract. A dynamical model that describes the effect of the HIV virus

on the immune system is presented. The effect of introducing antiretroviral
therapy on the model, consisting of RTIs and PIs, is investigated, along with

the result of undesired treatment interruption. The effect of both drugs can be

combined into a single input that further simplifies the model. Furthermore,
the system is linearized around the equilibrium, leading to a system of linear

differential equations of first order that can be integrated into courses of control

systems engineering in higher education.

1. Introduction

According to the most recent HIV/AIDS surveillance report in Greece, on Octo-
ber of 2015 [7], the Hellenic Center For Disease Control & Prevention (H.C.D.C.P.)
has so far reported 15.109 positive HIV infections. Of these, 3.782 have already
developed AIDS and around 7.700 are subject to antiretroviral therapy (ART). The
number of deaths resulting from the infection amounts to 2.562. According to the
H.C.D.C.P. 2014 report [8], the largest portion of HIV cases has been diagnosed
in men who had sex with men (46.2%), followed by the categories of heterosexual
sexual contact (21.3%) and injecting drug users (10.8%).

More specifically, during the period of 2011-2013, there was a big rise in the
number of cases in injecting drug users, that was followed by a steady decrease
during the last two years. Yet, as the Office for HIV and Sexually Transmitted
Diseases emphasizes, although the last data on the decrease infections are positive,
they should not be considered comforting. There must be constant actions for the
awareness of both the high risk groups and the general population.

Motivated by similar and even more alarming statistics in South Africa, the
University of Pretoria, being aware of the fact that the student population generally
falls into the high risk groups, mainly due to lack of awareness, decided to organise
an action to inform the students about the problem. The department of Electrical,
Electronic and Computer Engineering, the department of Telematic Learning and
Education Innovation and the Center for the Study of AIDS came together and
developed a CD [4, 5], with the aim of presenting a model for the HIV infection
from a control theory perspective. Their aim was to present the problem through

2010 Mathematics Subject Classification. 34A34; 37N35; 92B05; 92C50; 93A30l; 93C10;

93C15; 97M60.
Key words and phrases. HIV, AIDS, immune system, nonlinear systems, control systems en-

gineering, modeling, differential equations, education.
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a mathematical model that would introduce the students to the field of control
systems engineering, motivating them at the same time to learn more about this
sensitive subject.

Base on this innovative idea by the University of Pretoria, we propose an analyti-
cal description of the dynamic model for HIV infection, with the purpose of fulfilling
two different objectives. First, to present a detailed control engineering problem
that can be implemented in a vast variety of undergraduate courses in the field of
dynamical systems, thus making the syllabus much more interesting through the
perspective of real life applications. This study, as will be shown later, is subject to
extensive research [1–3,6, 9, 10, 12–15,18–22,24,25] and can be extended to master
and doctoral studies. Secondly, the awareness abong students on the subject should
be a natural consequence of taking such a subject.

2. The dynamical model of HIV

The Human Immunodeficiency Virus (HIV) acts by attacking the immune sys-
tem, causing its progressive failure over time and its collapse after years (when no
treatment is administered). The virus can be transmitted mainly through sexual
intercourse without protection. In addition the virus can be spread through sharing
needles in drug users and in health care accidents, through blood, organ or sperm
donations and from mother to child during pregnancy or birth [6].

The virus acts by infecting the CD4+ T cells. In the initial days of the infection,
the virus rapidly multiplies and as a result in the first 2-12 weeks the patient de-
velops general flu-like symptoms like fever, chills, rashes, night sweats, sore throat,
fatigue and swollen lymph nodes. This is called the acute HIV infection stage. The
spread of the virus activates the immune system to fight of the infection. This
leads after a period of 12-15 weeks to the suppression of the virus spread and the
stabilization of the immune system.

Now, the patient enters the clinical latency stage, also called the chronic HIV
infection. During this stage there is a balance between healthy CD4+ cells and
viral load, so the virus is still active but is repressed by the immune system and
reproduces at very low levels. This stage may last as long as 10 years for patients
who do not take medication and up to many decades for patients who are properly
administered to antiretroviral therapy. Eventually, through the chronic deterio-
ration, the immune system becomes weak and vulnerable, making the individual
vulnerable to opportunistic infections. This is the final stage of the HIV infections
and is called the Acquired ImmunoDeficiency Syndrome (AIDS). It should be noted
though that not all HIV positive people advance to this stage.

A simple model that describes the effect of the HIV to the immune system can be
constructed by describing the interactions between healthy CD4+ T cells, infected
CD4+ cells and the viral load, see Figure 1. Healthy CD4+ cells are produced by
the thymus at a constant rate of s and die at a rate d. They are infected by the
virus at a rate that is proportional to the product of their number and the viral
load. The effectiveness of the infection is given by a constant β. The infected CD4+
cells result from the infection of healthy cells and die at a constant rate m2. Free
virus particles, known as virions are produced from infected CD4+ cells at a rate
k and die at a rate m1 [2, 4, 5, 14, 15].
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Figure 1. Interaction of HIV and CD4+ cells.

These interactions between healthy CD4+ cells, infected CD4+ and free virions
can be described by the following system of nonlinear equations

Ṫ (t) = s− dT (t)− βT (t)v(t) (2.1a)

Ṫ ∗(t) = βT (t)v(t)−m2T
∗(t) (2.1b)

v̇(t) = kT ∗(t)−m1v(t) (2.1c)

where T (t) the number of healthy CD4+, T ∗(t) the number of infected CD4+
and v(t) the number of virions, also known as the viral load. Typical values for the
parameters of the system are given in Table 1, according to [2, 4, 5].

t Time Days
d Death rate of uninfected T cells 0.02 per day
k Rate of virions produced per infected T cell 100 counts/cell
s Production rate of uninfected T cells 100mm−3/day
β Infectivity rate of virions 2.4×10−5mm−3/day
m1 Death rate of virus 2.4/day
m2 Death rate of infected T cells 0.24/day

Table 1. Typical values for the system parameters.

A typical progression for the disease is shown in Figure 2. It is clear that after
initial infection, there is a rise in the infected CD4+ cells and after the reaction
by the immune system,the system is stabilized and we have a pass to the clinical
latency stage.

It should also be noted that the system always ends up in the same equilibrium
point, regardless of initial condition of the patient. This can be seen in Figure 3,
which shows multiple trajectories for varying initial conditions (note that some may
correspond to unrealistic data).

3. Antiretroviral treatment

Highly active antiretroviral therapy, or HAART, consists of taking multiple drugs
with different antiviral targets that maintain the function of the immune system
and suppress the virus. Two basic categories of antiretroviral drugs are the reverse
transcriptase inhibitors or RTIs and protease inhibitors or PIs. There are also other
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Figure 2. Disease progression.

Figure 3. System trajectories for different initial conditions.

drug categories like non-nucleoside reverse-transcriptase inhibitors (NNRTIs), nu-
cleoside reverse transcriptase inhibitors (NRTIs) and fusion/entry inhibitors. Since
though most of the current bibliography focuses on RTIs and PIs, we adopt this
line of analysis. RTIs act by blocking the infection of new T cells while PIs pre-
vent the production of new virions. Taking into consideration the effect of these
artiretroviral drugs, model (2.1) takes the form [2,4, 5, 14, 15]:

Ṫ (t) = s− dT (t)− (1− u1(t))βT (t)v(t) (3.1a)

Ṫ ∗(t) = (1− u1(t))βT (t)v(t)−m2T
∗(t) (3.1b)

v̇(t) = (1− u2(t)) kT
∗(t)−m1v(t) (3.1c)
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where the terms (1− u1(t)) and (1− u2(t)) represent the effectiveness of RTIs and
PIs respectively (for u1,2 = 0 the drug is not administered, while for u1,2 = 1 the
treatment is 100% effective, which of course is not achievable). Here, by trying
different combinations of intensity for the two drugs we can observe their effect on
the viral load, as shown in Figure 4. Indeed, it can be seen that the viral load is
successfully suppressed. The treatment is initiated at the 150th day.

Figure 4. Viral load for different drug dosages.

What should also be noted is that the drugs should be taken continuously and
with no interruptions, so that the virus is always suppressed and is not given the
chance to mutate. In case the treatment is interrupted, there is a big possibility that
the virus will regress back to high levels. This is something that can be confirmed
from the model (3.1). Indeed, as can be seen in Figure 5, if the treatment starts at
day 150 but is terminated at day 400, the virus load may stay low for a maximum
of 150 more days, depending on the effectiveness of the drugs, but rises back up
afterwards. The issue of treatment interruption has been clinically studied in [24].

As a further simplification of the model (3.1), the two inputs can be combined
into a single one, that acts on the third differential equation. More specifically
in [2,14,15], it was shown after clinical studies that the effects of RTI and PI drugs
cannot be considered decoupled. Furthermore, the combined treatment seems to
be much more effective on the parameter k than in β. Taking into account these
observations, the nonlinear model (3.1) takes the form

Ṫ (t) = s− dT (t)− βT (t)v(t) (3.2a)

Ṫ ∗(t) = βT (t)v(t)−m2T
∗(t) (3.2b)

v̇(t) = (1− u(t)) kT ∗(t)−m1v(t) (3.2c)

where the parameter u(t) denotes the effectiveness of the combined treatment. The
systems response for a single input model is shown in Figure 6. A notable difference
that we observe though in constrast to the two input model (3.1) is that the viral
load exhibits different and larger overshoot for different drug dosages, after the
interruption of treatment.
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Figure 5. Viral load after treatment interruption.

Figure 6. Viral load for the single input system.

4. Linearization

The analysis of the nonlinear systems (2.1),(3.1),(3.2) is a very complex and
challenging task. For this reason, our aim is to determine the dynamical behavior
of the system around its equilibrium points.

Definition 4.1. [23] A point x∗ ∈ Rn is an equilibrium point for the system
ẋ = f(t, x) if f(x∗) = 0 for all t ≥ 0.

So, in order to specify the equilibrium points of (2.1), we solve the system of
equations

0 = s− dT (t)− βT (t)v(t) (4.1a)

0 = βT (t)v(t)−m2T
∗(t) (4.1b)

0 = kT ∗(t)−m1v(t) (4.1c)
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In case where T ∗ = v = 0, the equilibrium is(
s
d 0 0

)
(4.2)

and in case where v 	= 0 the equilibrium is(
m1m2

kβ
s

m2
− dm1

βk
ks

m1m2
− d

β

)
=
(
240 21.6667 902.778

)
(4.3)

The first equilibrium corresponds to a healthy uninfected individual, so it is not
of interest. The second equilibrium corresponds to the equilibrium point after
the patients enters the clinical latency stage. To linearise the system around the
equilibrium, we first compute the Jacobian of the system, which is given by

J(f) =

⎛
⎝−d− βv 0 −βT

βv −m2 βT
0 k −m1

⎞
⎠ (4.4)

Computing the eigenvalues of the Jacobian, we find that they are all stable, and thus
the equilibrium point is hyperbolic [11]. This, in combination with the Hartman-
Grobman theorem [23] guarantees that the linearization is possible and that the lin-
earized system preserves the qualitative properties of the nonlinear system around
the equilibrium. With the addition of inputs, we define

f̃1(T, T
∗, v, u1, u2) = s− dT (t)− (1− u1)βT (t)v(t) (4.5a)

f̃2(T, T
∗, v, u1, u2) = (1− u1)βT (t)v(t)−m2T

∗(t) (4.5b)

f̃3(T, T
∗, v, u1, u2) = (1− u2)kT

∗(t)−m1v(t) (4.5c)

The linearized system is [11]:⎛
⎝ Ṫ

Ṫ ∗

v̇

⎞
⎠ =

⎛
⎜⎝

∂f̃1
∂T

∂f̃1
∂T∗

∂f̃1
∂v

∂f̃2
∂T

∂f̃2
∂T∗

∂f̃2
∂v

∂f̃3
∂T

∂f̃3
∂T∗

∂f̃3
∂v

⎞
⎟⎠
⎛
⎝ T
T ∗

v

⎞
⎠+

⎛
⎜⎝

∂f̃1
∂u1

∂f̃1
∂u2

∂f̃2
∂u1

∂f̃2
∂u2

∂f̃3
∂u1

∂f̃3
∂u2

⎞
⎟⎠(

u1

u2

)
(4.6)

computing the values of the above matrices for(
T T ∗ v u1 u2

)
=
(
240 21.6667 902.778 0 0

)
(4.7)

we end up with the state space system⎛
⎝ Ṫ

Ṫ ∗

v̇

⎞
⎠ =

⎛
⎝−0.0417 0 −0.0058

0.0217 −0.24 0.0058
0 100 −2.4

⎞
⎠

︸ ︷︷ ︸
A

⎛
⎝ T
T ∗

v

⎞
⎠+

⎛
⎝ 5.2 0
−5.2 0
0 −2166.67

⎞
⎠

︸ ︷︷ ︸
B

(
u1

u2

)
(4.8a)

y =
(
0 0 1

)︸ ︷︷ ︸
C

⎛
⎝ T
T ∗

v

⎞
⎠ (4.8b)

where we chose as an output the viral load. The next step in the analysis of the
state space system (4.8) is to compute its transfer function, that gives the connection
between the output and each input [16]. It is computed as

G(s) = C(sI3 −A)
−1

B = (4.9)

=
(

−520s−10.4
s3+2.682s2+0.1061s+0.01242

−2167s2−610.4s−21.68
s3+2.682s2+0.1061s+0.01242

)
(4.10)
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The controllability matrix is given by

L =
(
B AB A2B

)
= (4.11)

=

⎛
⎝ 5.2 0 −0.216667 12.48 3.00423 −30.472
−5.2 0 1.36067 −12.48 −3.32645 33.2176
0 −2166.67 −520. 5200. 1384.07 −13728.

⎞
⎠ (4.12)

and it has full rank and so the system is controllable. Thus, the system can be
compensated through the use of open or closed loop controllers.

If we consider the single input nonlinear system (3.2), as presented in the previous
section, then following the same procedure we end up in the state space system (4.8),
where the new matrix B̄ consists of just the second column of B.

Although the linear model (4.8) is a simplification of (2.1) and only captures its
dynamical qualities around the equilibrium, can be used as a basis for the demon-
stration of a plethora of problems of control systems engineering. Such topics
include the state feedback of the system (4.8) and the computation of its gain mar-
gin, the design of PID controllers for the reduction of the viral load, the evaluation
of the sampling time through Bode diagrams to decide the frequency in which the
patient should be tested and many more.

5. Conclusions

We presented a fundamental nonlinear model that describes the HIV infection.
The effect of antiretroviral treatment was studied under variable drug effectiveness.
Then a linera state space model was developed to further simplify the dynamic
behavior of the system and various control engineering problems where proposed
like the design of controllers for its compensation. Every part of this work can be
potentially integrated into the syllabus of linear and nonlinear dynamical systems
courses and can be combined with the use of computer software like Matlab [16,
17] to simulate the above models. Further research on the field of HIV/AIDS
infection constitutes the study of more complex nonlinear models [1, 3, 9, 12,19,25]
that describe more accurately the complicated nature of the virus, the problem
of feedback linearization of the nonlinear system [2, 14, 15, 20] and the use of time
variant or even impulsive inputs for its control [2, 14, 15,21].
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TOPOLOGICAL OBSTRUCTIONS OF ISOMETRIC IMMERSIONS

CHRISTOS ONTI

Abstract. According to Nashs embedding theorem, every Riemannian man-

ifold admits an isometric immersion into a Euclidean space with suffciently
high codimension. On the other hand, when the codimension is low topo-

logical restrictions do appear. For example, every closed (compact, without

boundary) positively curved hypersurface in Euclidean space is diffeomorphic
to a sphere. The aim of our talk is to present this type of topological obstruc-

tions of isometric immersions of low codimension.
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TOPOLOGICAL OBSTRUCTIONS OF ISOMETRIC IMMERSIONS

KLEANTHIS POLYMERAKIS

Abstract. The problem of rigidity or deformability of isometric immersions

and the study of the moduli space of a deformable immersion, are of the
most central in the Theory of Isometric Immersions. In this talk, basic results

will be presented that provide partial answers to the rigidity problem, such as

Beez-Killing’s and Do Carmo-Dajczer’s theorems, as well as results concerning
deformable immersions.
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RECOLLEMENTS OF DERIVED MODULE CATEGORIES

CHRYSOSTOMOS PSAROUDAKIS

Abstract. Recollements of abelian/triangulated categories are exact sequences

of abelian/triangulated categories where both the inclusion and the quotient
functors have left and right adjoints. They appear quite naturally in vari-

ous settings and are omnipresent in representation theory. Recollements in
which all categories involved are module categories (abelian case) or derived

categories of module categories (triangulated case) are of particular interest.

In the abelian case, the standard example is the recollement induced by the
module category of a ring R with an idempotent element e, and in the tri-

angulated case the standard example is given as the derived counterpart of

this recollement of module categories when the ideal ReR is stratifying. The
latter recollement is called stratifying. The aim of this talk is two-fold. First,

we classify, up to equivalence, recollements of abelian categories whose terms

are equivalent to module categories. Then, we provide necessary and sufficient
conditions for a recollement of derived categories of module categories to be

equivalent to a stratifying one. In particular, we show that every derived rec-

ollement of a finite dimensional hereditary algebra is equivalent to a stratifying
one.

This is joint work with Jorge Vitória (arXiv:1511.02677).
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THE ASSOCIATED LIE RING OF A FORMANEK-PROCESI

GROUP

H. SEVASLIDOU

Abstract. Let G be a group. For a positive integer c, we write γc(G) for the

c-th term of the lower central series of G. Let

gr(G) =
⊕

c≥1

γc(G)/γc+1(G)

be the associated Lie ring of G. Motivated by a recent work of Metaftsis and

Papistas regarding the McCool group M3, we describe the associated Lie ring
of the Formanek-Procesi group

H = 〈t, a, b : (t, a, a) = (t, b, b) = (t, b, a) = (t, a, b) = 1〉.
It is important to mention that the above group is not a linear group. It is
constructed by Formanek and Procesi in order to show that the automorphism

group of a free group of finite rank > 3 is not linear. Furthermore, Bardakov

and Mikhailov proved that that the group of IA-automorphisms of F3 is not
linear, since it contains such a group as a subgroup.

1. Introduction

By “Lie algebra”, we mean Lie algebra over the ring of integers Z. Let G be
a group. We denote by (a, b) the commutator (a, b) = a−1b−1ab. For a positive
integer c, let γc(G) be the cth term of the lower central series of G. The (restricted)
direct sum of the quotients γc(G)/γc+1(G) is the associated Lie algebra of G,

�L(G) =
⊕
c≥1

γc(G)/γc+1(G).

The Lie bracket multiplication in �L(G) is defined as

[aγc+1(G), bγd+1(G)] = (a, b)γc+d+1(G),

with a ∈ γc(G), b ∈ γd(G) and (a, b) ∈ γc+d(G) and extends the multiplication
linearly. The Formanek-Procesi groups are HNN extensions of the form

H(G) = 〈G×G, t : t(g, g)t−1 = (1, g) for all g ∈ G〉.
Let Fn be free group of finite rank n, with n ≥ 2. We point that⋂

c≥1

γc(Fn) = {1},

2010 Mathematics Subject Classification. 17B01, 20D45, 20F40.
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that is, Fn is residually nilpotent. It is known that the Lie algebra �L(Fn) is free of
rank n.

We are interested in the associated Lie algebra �L(H(Fn)). The group H(Fn) has
the following presentation

H(Fn) = 〈t, a1, a2, . . . , an, b1, b2, . . . , bn : bjaib
−1
j = ai, bian+1b

−1
i = an+1ai,

i, j = 1, 2, . . . , n〉.
By applying Tietze transformations, we have

H(Fn) = 〈t, a1, . . . , an : (t, ai, aj) = 1 ∀i, j ∈ {1, . . . , n}〉.
Let L be a free Lie algebra of rank n+1 with a free generating set {x1, . . . , xn+1},
and let J be the ideal in L generated by the set

V = {[xn+1, xi, xj ] : i, j ∈ {i, . . . , n}}.
First, we show that J is a free Lie algebra, and it is a direct summand of L.
Our proof is mainly based on the techniques developed in the paper “On the Mc-
Cool group M3 and its associated Lie algebra ”by V. Metaftsis and A.I. Papistas
(accepted in Commun. Algebra, 2016). Namely, let V1 and V2 be the Z-modules
spanned by the sets V1 = {x1, . . . , xn} and V2 = {xn+1}, respectively. Since V1∪V2

is a free generating set of L, we have

L = L(V1 ⊕ V2).

By the Lazard Elimination Theorem (LETh), we have

L = L(V1)⊕ L(V2)⊕ L(W ),

where
W =

⊕
m≥2

Wm

and, for m ≥ 2,

Wm =
⊕

a+b=m−2
a,b≥0

[V2, V1, aV1, bV2]

for all m ≥ 2. Let

W (1) =
⊕
m≥2

W (1)
m ,

where
W (1)

m = [V2, V1, (m−2)V2]

and
W (2) =

⊕
m≥3

W (2)
m ,

where
W (2)

m =
⊕

k+γ=m−1
k≥2

[V2, kV1, γV2].

We point out that

L(W ) = L(W (1) ⊕W (2))
(LETh) = L(W (1))⊕ L(W (2) �W (1))

We prove that

J = L(W (2) �W (1))
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(and so, J is a free Lie algebra). Therefore,

L = L(V1)⊕ L(V2)⊕ L(W (1))⊕ L(W (2) �W (1))
= L(V1)⊕ L(V2)⊕ L(W (1))⊕ J.

(That is, J is a direct summand of L and so, L/J is torsion-free Z-module.) Further-
more, we prove that L/J is isomorphic to gr(H(Fn)) as a Lie algebra, by correcting
a result of Cohen, Cohen and Prassidis.

Let IA(Fn+1) be the group of IA-automorphisms of Fn+1. By choosing suit-
able IA-automorphisms of Fn+1, we construct a subgroup of IA(Fn+1) isomorphic
to H(Fn). This observation gives that IA(Fn+1) is not linear group, which is a
well known result. Since IA(Fn+1) residually nilpotent, we obtain H(Fn) is residu-
ally nilpotent. Furthermore, since γc(H(Fn))/γc+1(H(Fn)) is torsion-free, we have
H(Fn) is a Magnus group. Our next step is to give a formula for the rank of each
γc(H(Fn))/γc+1(H(Fn)), and to examine whether or not gr(H(Fn)) is embedded
into the Lie algebra of IA(Fn+1).
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THE TRUE CIRCUIT CONJECTURE

CHRISTOS TATAKIS

Abstract. Let G be a finite connected graph on the vertex set V (G) and on

the edge set E(G). With I(G) we denote the toric ideal IAG
in K[e1, . . . , em],

where AG = {αe, e ∈ E(G)} ⊂ Zn. The set of the primitive binomials forms

the Graver basis of IAG
and is denoted by GrG. An irreducible binomial is

called a circuit if it has minimal support. The set of the circuits is denoted by

CA.

Consider any circuit C ∈ CA and regard its support supp(C) as a subset
of A. The lattice Z(supp(C) has finite index in the lattice R(supp(C) ∩ ZA,

which is called the index of the circuit C and denoted by index(C). The true

degree of the circuit C is the product deg(C) · index(C).
B. Sturmfels in his lecture at Santa Cruz (July 1995), made the conjecture

that circuits always have the maximal degree among the elements of the Graver

basis. Hosten and R. Thomas gave a counterexample of a toric ideal such that
the maximal degree of the elements of the Graver basis was 16 while the

maximal degree of the circuits was 15. This example led B. Sturmfels to alter

the conjecture to the following:
True circuit conjecture (Sturmfels, 1996): Let tA be the maximal

true degree of any circuit in CA. Then it holds that

deg(B) ≤ tA,

for every element B in the Graver basis GrA of a toric ideal IA.

We present an infinite family of counterexamples to the true circuit con-
jecture by providing toric ideals and elements of the Graver basis for which

their degrees are not bounded above by tA. Next, we extend this result, by

studying the following question:
Question: Does the degree of any element in the Graver basis GrA of a

toric ideal IA is bounded above by a constant times (tA)2 or a constant times
102016(tA)2016?

We provide a family of graphs for which the degree of any element in the

Graver basis of the corresponding toric ideal cannot be bounded polynomially
above by the maximal true degree of any circuit.
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THE RICCI FLOW IN DIMENSION THREE

ILIAS TERGIAKIDIS

Abstract. Let (M, g) be a smooth, closed Riemannian manifold. The Ricci
flow

∂

∂t
g(t) = −2Ric(g(t))

g(0) = g0

is a PDE that evolves the metric tensor. In this talk we will make an intro-
duction to some special solutions to the Ricci flow, namely the Ricci solitons.

The Ricci solitons can be regarded as generalized fixed points of the flow and
they correspond to those solutions, which change only by a diffeomorphism

and rescaling under the Ricci flow.

1. Introduction

Let M be a smooth, closed (i.e. compact and without boundary) manifold with
Riemannian metric g0 ∈ Γ(S2

+T
∗M). The Ricci flow is a PDE that evolves the

metric tensor:
∂

∂t
g(t) = −2Ric

g(0) = g0,

where {g(t)} is a one-parameter family of metrics on M and Ric := Ric(g(t))
denotes the Ricci curvature. It will be clear later that the minus sign makes the
Ricci flow a heat-type equation, so it is expected to ”average out” the curvature.

In order to get a feel for the evolution equation, we will look at some simple
examples.

Example 1.1 (Einstein metrics). Suppose that the initial metric g0 is Ricci flat, i.e.
Ric(g0) = 0. In this case the metric will remain stationary for all subsequent times.
Concrete examples are the Euclidean space Rn and the flat torus Tn = S1× ...×S1.
Suppose now that the initial metric is an Einstein metric, i.e. Ric(g0) = λg0,
λ ∈ R. A solution g(t) with g(0) = g0 is given by

g(t) = (1− 2λt)g0.

If λ > 0, λ = 0 or λ < 0 we call the solution shrinking, steady or expanding
respectively. The simplest shrinking solution is that of the unit sphere (Sn, g0)
endowed with the round metric. It holds that Ric(g0) = (n − 1)g0, so g(t) =

2010 Mathematics Subject Classification. ...;...

Key words and phrases. Ricci Flow.
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(1−2(n−1)t)g0 is a solution to the Ricci flow defined on the maximal time interval
(−∞, T ), where T = 1

2(n−1) . That is, under the Ricci flow Sn stays round and

shrinks homothetically at a steady rate. Observe that at time T the sphere shrinks
to a point. By contrast, the simplest expanding solution is that of the hyperbolic
space Hn endowed with the hyperbolic metric (constant sectional curvature −1). In
this case Ric(g0) = −(n−1)g0, so g(t) = (1+2(n−1)t)g0 is a solution to the Ricci
flow and the manifold expands homothetically for all time.

Example 1.2 (Quotient metrics). Let M = N/G be a quotient of a Riemannian
manifold N by a discrete group of isometries G. Then it will remain so under
the Ricci flow, as the Ricci flow on N preserves the isometry group. For example
RPn = Sn/Z2 shrinks to a point in finite time, as does its cover Sn.

Example 1.3 (Product Metrics). Let M ×N be a product manifolds endowed with
the product metric gM ⊕ gN . Under the Ricci flow the metric will remain a product
metric and its factor evolves independently. For example for S2×S1, the first factor
shrinks to a point in finite time, while the second factor stays stationary.

2. Short Time Existence and Uniqueness

2.1. Existence Theory for Parabolic PDEs. Let M be a Riemannian manifold
and π : E → M a vector bundle over M . Consider now a (time-dependent) section
u : M × [0, T ) → E given locally for some local frame (ek) by u = ukek. We are
interested in PDEs describing the evolution of u:

∂u

∂t
= L(u)

u(x, 0) = u0(x),

where L : Γ(E) → Γ(E) is some second-order differential operator given in terms
of local coordinates (xi) on M and the local frame (ek) on E as

L(u) =
(
(λij)

k
l

∂2ul

∂xi∂xj
+ (μi)

k
l

∂ul

∂xi
+ νkl u

l
)
ek (2.1)

where, λ ∈ Γ(S2T ∗M⊗Hom(E,E)), μ ∈ Γ(T ∗M⊗Hom(E,E)) and ν ∈ Γ(Hom(E,E)).

Definition 2.1. Let ζ ∈ Γ(T ∗M). The total symbol of L in the direction ζ is the
bundle homomorphism

(σ[L](ζ))(u) = ((λij)
k
l ζ

iζjul + (μi)l
kζiul + λk

l u
l)ek.

The principal symbol of L in the direction ζ is now the bundle homomorphism of
only the highest order terms, that is

σ̂[L](ζ) = (λij)
k
l ζ

iζj(e∗)l ⊗ ek.

Remark 2.2. As Hamilton noted in [4], computing the symbol is easily obtained (at
least heuristically) by replacing the derivatives ∂

∂xi
by the Fourier transformation

variable ζi.

Definition 2.3. L is called elliptic if its principal symbol σ̂[L](ζ) is an isomorphism
whenever ζ 	= 0.

Definition 2.4. The system

∂u

∂t
= L(u)
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u(x, 0) = u0(x),

is called strongly parabolic if there exists δ > 0, such that at each point of M , for
all φ 	= 0 and u 	= 0

〈σ̂[L](ζ)(u), u〉 > δ|ζ|2|u|2.

The definition implies in particular, that the principal symbol in any direction
is a linear isomorphism of the fibre. A linear equation of the form ∂tu = Lu is
parabolic if L is elliptic.

When faced with a non-linear PDE, one attempts to linearise the equation in
such a way that linear theory can be applied. We are specifically interested in the
linearisation of a non-linear operator L on a vector bundle E.

Definition 2.5. If u(t) ∈ Γ(E) is a time-dependent section of E, such that u(0) =
u0 and u′(0) = v, then the linearization of L at u0 is the linear map

DL : Γ(E) → Γ(E)

v �→ ∂

∂t
L(u(t))|t=0.

Definition 2.6. The system

∂u

∂t
= L(u) (2.2)

u(x, 0) = u0(x),

is strongly parabolic at u0 if the system

∂u

∂t
= DL(u)

u(x, 0) = u0(x).

is parabolic in the sense described above.

Theorem 2.7. If the system (2.2) is strongly parabolic at u0, then there exists a
solution on some time interval [0, T ) and the solution is unique for as long as it
exists.

2.2. The DeTurck trick. A crucial step in the study of geometric evolution equa-
tions is to show short time existence and uniqueness. As Theorem 2.7 states, the
system must be strongly parabolic. We will show that the Ricci flow fails to be
strongly parabolic. However Hamilton managed to overcome this difficulty by us-
ing the Nash-Moser Implicit Function Theorem. A little time later DeTurck in [3]
found a more direct proof by modifying the flow by a time-dependent change of
variables to make it parabolic. This is also the method we will follow in this survey.

We would like to regard the Ricci tensor as a nonlinear operator on the space
of metrics, i.e. Ric : Γ(S2

+T
∗M) → Γ(S2T ∗M). We define the linearisation of the

Ricci tensor

(DRic)
(∂gij

∂t

)
=

∂

∂t
Ric(gij(t))|t=0.

Lemma 2.8. The linearisation of the Ricci tensor is given by

(DRic)(h)jk =
1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp).
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Proof. The proof is immediate if we use the following fact. If ∂
∂tgij = hij , where h

is some symmetric 2-tensor, then the variation formula for the Ricci tensor is given
by

∂

∂t
Rjk =

1

2
gpq(∇q∇jhkp +∇q∇khjp −∇q∇phjk −∇j∇khqp).

A proof of this statement can be found in [1] pg. 69, [2] pg. 109 and [7] pg.22. �

In order to check if the system is strongly parabolic we must calculate its principal
symbol. The principal symbol in the direction ζ of the linear operator D(−2Ric)
(as a function of the metric g) is the bundle homomorphism

σ̂[−2DRic](ζ) : S2
+(T

∗M) → S2(T ∗M)

and is obtained by replacing the covariant derivative ∇i by the covector ζi, namely

σ̂[−2DRic](ζ)(h)jk = gpq(−ζqζjhkp − ζqζkhjp + ζqζphjk + ζjζkhqp).

Now the Ricci flow is strongly parabolic if there exists some δ > 0, such that for
all ζ 	= 0 and all hij 	= 0

〈σ̂[−2DRic](ζ)(h), h〉 > δ|ζ|2|h|2,
which can be rewritten as

gpq(−ζqζjhkp − ζqζkhjp + ζqζphjk + ζjζkhqp)h
ij > δζiζ

ihrsh
rs.

Observe that if we choose hkp = ζkζp, then the left hand side is zero. Therefore the
Ricci flow in not strongly parabolic.

Remark 2.9. The fact that the principal symbol has non-trivial kernel is related
to the invariance of the Ricci tensor under diffeomorphism,

Ric(φ∗g(t)) = φ∗Ric(g(t)).

See [1], Section 2.2 for more details.

Because the Ricci flow in not strongly parabolic we can not apply Theorem 2.7
immediately. The construction we will describe is due to DeTurck. He showed that
it is possible to modify the Ricci flow and thereby obtain a parabolic PDE by a
clever trick: one modifies the right-hand side of the equation by adding a term
which is a Lie derivative of the metric with respect to a certain vector field which
in turn depends on the metric. Remarkably, one then can obtain a solution to the
original Ricci flow equation by pulling back the solution of the modified flow by
appropriately chosen diffeomorphisms.

In order to motivate DeTurck’s idea we will rewrite the linearisation of −2Ric,
to see which terms are causing the weak parabolicity.

(−2DRic)(h)jk = gqp(∇q∇phjk +∇j∇khqp −∇q∇jhkp −∇q∇khjp),

because gqp = gpq. Then

(−2DRic)(h)jk = Δhjk + gqp(∇j∇khqp −∇q∇jhkp −∇q∇khjp).

By the formula for commuting covariant derivatives (look at [2] pg. 14) we have
that

∇q∇jhkp = ∇j∇qhkp −Rr
qjkhrp −Rm

qjphkm

= ∇j∇qhkp + lower order terms in h.
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So by using that ∇g = 0 we obtain

(−2DRic)(h)jk = Δhjk +∇j

[
gpq(

1

2
∇khpq −∇qhkp)

]
+∇k

[
gpq(

1

2
∇jhpq −∇qhjp)

]
+ lower order terms in h

= Δhjk +∇jVk +∇kVj + lower order terms in h.

The lower order terms have no contribution to the principal symbol. The first
term is a good term, but the terms in V are bad and make the Ricci flow non-
parabolic. Furthermore observe that ∇jVk +∇kVj corresponds to a Lie derivative
term.

By the discussion above Vj is defined by

Vj = gpq(
1

2
∇jhpq −∇qhqj)

= −1

2
gpq(∇phqj +∇qhpj −∇jhpq).

Remark 2.10. If ∂
∂tgij = hij, where h is some symmetric 2-tensor, then the

variation formula for the Christoffel symbols is given by

∂

∂t
Γi
pq =

1

2
gij(∇phqj +∇qhpj −∇jhpq).

A proof of this statement can be found in [1] pg. 68, [2] pg. 108 and [7] pg.20.

Let

DΓg : Γ(S2T ∗M) → Γ(S2T ∗M ⊗ TM)

denote the linearisation of the Levi-Civita connection and it is given by

((DΓg)(h))
i
pq =

∂

∂t
Γi
pq|t=0.

Then

Vj = −gpqgij((DΓg)(h))
i
pq.

We wish to add an appropriate correction term to the Ricci tensor to make it
elliptic. Fix a background metric g̃ on M with Levi-Civita connection Γ̃. The
considerations above lead us to define a vector field W by

W i = gpq(Γi
pq − Γ̃i

pq).

As the difference of two connections is a tensor, it is a globally well defined vector
field. But W involves only one derivative of g, so the map

Q(Γ̃) : Γ(S2T ∗M) → Γ(S2T ∗M)

g �→ LgW

corresponds to a second order differential operator. The linearisation of Q is given
by

(DQ)(h)jk = ∇jVk +∇kVj + lower order terms in h.

This leads us to define a modified Ricci operator

P (g(t)) = −2Ric(g(t))−Q(g(t)) = −2Ric(g(t))− LW g(t).

The linearisation of P is thus given by

(DP )(h) = Δh+ lower order terms in h,
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hence the principal symbol is given by

σ̂[DP ](ζ)(h) = |ζ|2h. (2.3)

DeTurck demonstrated a strategy for constructing a unique short-time solution ḡ(t)
of the Ricci flow

∂

∂t
ḡ(t) = −2Ric(ḡ(t))

ḡ(0) = g0

on a closed manifold M . We will give an outline (further details in [1] pg. 80,81):

• The Ricci-DeTurck flow is given by

∂

∂t
gij = −2Rij +∇iWj +∇jWi

g(0) = g0,

where Wj = gjkW
k = gjkg

pq(Γk
pq − Γ̃k

pq). It follows from (2.3), that the
system is strongly parabolic, thus by Theorem 2.7 short time existence and
uniqueness hold.

• One observes that the one pararameter family of vector fields W (t) exist as
long as the solution g(t) exists. Then one defines a one parameter family
of diffeomorphisms φt : M → M by

∂

∂t
φt = W (t)

φ0 = idM .

But M is compact, so from ([1], Lemma 3.15, pg. 82) φt exist and remain
diffeomoprhisms for as long as the solution g(t) exists, namely for t ∈ [0, T ).

• The family of metrics ḡ(t) := φ∗
t g(t) defined for 0 ≤ t < T is a solution to

the Ricci flow.
• For uniqueness it suffices to prove that a solution to Ricci- DeTurck flow
is produced from a solution of Ricci flow after a reparametrization defined
for harmonic map heat flow. We won’t give this technical proof, but the
interested reader could look up [1] Chapter 3.4.

Finally we can state the short time existence and uniqueness result for the Ricci
flow.

Theorem 2.11 (Short Time Existence and Uniqueness for the Ricci Flow). Given
a smooth metric g0 on a closed manifold M , there exists a maximal interval [0, T ),
such that a solution g(t) of the Ricci flow with g(0) = g0 exists, is smooth on [0, T )
and this solution is unique.

3. The Maximum Principle

The maximum principle is the main tool we will use to understand the behaviour
of solutions to the Ricci flow. It is a very powerful tool which can be used to show
that pointwise inequalities on the initial data of parabolic PDEs are preserved under
the evolution. The question of what it means for a tensor quantity to ”average out”
naturally arises.
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3.1. The Scalar Maximum Principle.

Theorem 3.1 (Weak Maximum Principle for Scalars). Let M be a closed manifold.
Suppose that for t ∈ [0, T ), g(t) is a one-parameter family of metrics on M and
X(t) a one-parameter family of vector fields on M . Let F : R → R be a locally
Lipschitz function. Furthermore assume that u : M × [0, T ) → R is a C2 solution
to

∂u

∂t
≤ Δg(t)u+ 〈X(t),∇u〉+ F (u).

Such kind of solutions are called subsolutions. Now suppose that there exists C ∈ R,
such that u(x, 0) ≤ C for all x ∈ M and let φ : [0, T ) → R be a solution to the
associated ODE

dφ

dt
= F (φ)

φ(0) = C.

Then u(x, t) ≤ φ(t) for all x ∈ M and t ∈ [0, T ) in the interval of existence of φ.
Analogous, if

∂u

∂t
≥ Δg(t)u+ 〈X(t),∇u〉+ F (u)

the solution is called a supersolution. In this case under the assumptions that
u(x, 0) ≥ C for all x ∈ M and φ is a solution to the associated PDE, we obtain
that u(x, t) ≥ φ(t) for all x ∈ M and t ∈ [0, T ) in the interval of existence of φ.

Proof. The proof can be found in [1] pg. 96. �
3.2. The Maximum Principle for Vector Bundles. LetM be a closed oriented
manifold equiped with a smooth one parameter family of metrics g(t), t ∈ [0, T )
and their Levi-Civita connections ∇(t). Let π : E → M be a vector bundle over M
with a fixed bundle metric h. Let

∇̃(t) : Γ(E) → Γ(E ⊗ T ∗M)

be a smooth family of connections compatible with h in the sense that for all
X ∈ Γ(TM), sections φ, ψ ∈ Γ(E) and times t ∈ [0, T ) one has

X(h(φ, ψ)) = h(∇̃Xφ, ψ) + h(φ, ∇̃Xψ).

In order to define the Laplacian of a section φ we have to take two covariant
derivatives of φ and then take the trace. The first covariant derivative is ∇̃φ ∈
Γ(E ⊗ T ∗M) and we encounter a problem, because ∇̃φ is not a section of E, so we

cannot simply take the second covariant derivative using ∇̃(t). We need to resolve
this situation. We define a new connection

∇̂(t) : Γ(E ⊗ T ∗M) → Γ(E ⊗ T ∗M ⊗ T ∗M)

for all X ∈ Γ(TM), φ ∈ Γ(E) and ξ ∈ Γ(T ∗M) by

∇̂X(φ⊗ ξ) := ∇̃Xφ⊗ ξ + φ⊗∇Xξ.

Then the time dependent bundle Laplacian Δ̂(t) is defined for all φ ∈ Γ(E) as the
metric trace

Δ̂φ := trg∇̂(∇̃φ).

We are going to state now a maximum principle for sections of a vector bundle.
In the scalar maximum principle case we showed, that the lower bound of the
solution is presevered. Now we will show, that in the case of vector bundles the
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solution stays inside convex sets. The set should also be closed and invariant under
parallel translation.

Theorem 3.2 (Maximum Principle for Vector Bundles). Let F : E× [0, T ) → E be
a continuous map such that F (·, ·, t) : E → E is fiber preserving for each t ∈ [0, T )
and F (·, x, t) : Ex → Ex is Lipschitz for all x ∈ M and t ∈ [0, T ). Let K be a
closed subset of E such that:

• K is invariant under parallel translation by ∇̃(t) for all t ∈ [0, T ) and
• Kx = K ∩ π−1(x) is a closed convex subset of Ex = π−1(x) for all x ∈ M .

Furthermore assume that α(t), t ∈ [0, T ) is a time dependent section of E that is a
solution of the nonlinear PDE

∂α

∂t
= Δ̂α+ F (α),

such that α(0) ∈ K. Suppose now that every solution of the ODE

dα

dt
= F (α)

α(0) ∈ Kx

remains in Kx. Then the solution α(t) of the PDE remains in K.

4. Derivative Estimates and Curvate Blow-Up at Singularities

4.1. Evolution of Geometric Quantities under the Ricci Flow. In order
to apply maximum principle arguments to the curvature, we need to know how
curvature quantities evolve under the Ricci flow.

Remark 4.1. Recall the following local expressions, which can be found in any
Riemannian geometry book.
The components of the (4,0) Riemann curvature tensor:

Rijkl = glpR
p
ijk.

The symmetries of the Riemann curvature tensor:

Rijkl = Rklij = −Rjikl = −Rijkl.

Observe that the symmetries above allow us to view the Riemann curvature tensor
as a section Rm ∈ Γ(S2(Λ2T ∗M)). The first Bianchi identity:

Rijkl +Rjkil +Rkijl = 0.,

The second Bianchi identity:

∇pRijkl +∇iRjpkl +∇jRpikl = 0.

The components of the Ricci curvature tensor:

Rij = Rp
pij = glpRpijl,

with the symmetry Rij = Rji.
The scalar curvature:

R = Ri
i = gijRij .

The contracted second Bianchi identity:

∇jRij =
1

2
∇iR.
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Finally the (rough) Laplacian is a family of operators Δ : Γ(T k
l M) → T k

l M) defined
by:

ΔF := gij∇i∇jF.

Lemma 4.2. Suppose that gij(t) is a solution of the Ricci flow:

∂

∂t
gij = −2Rij .

Then the various geometric quantities evolve according to the following equations:

(1) Metric inverse:
∂

∂t
gij = 2Rij

(2) Christoffel Symbols:

∂

∂t
Γk
ij = −gkl(∇iRjl +∇jRil −∇lRij)

(3) (4,0)-Riemann curvature tensor:

∂

∂t
Rijkl = ΔRijkl + 2(Bijkl −Bijlk −Biljk)

−(Rp
iRpjkl +Rp

jRipkl +Rp
kRijpl +Rp

l Rijkp),

where Bijkl = −Rq
pijR

p
qlk.

(4) Ricci tensor:

∂

∂t
Rij = ΔRij + 2gpqgrsRpijrRqs − 2gpqRipRqj .

(5) Scalar Curvature:
∂

∂t
R = ΔR+ 2|Ric|2.

Proof. One should be at first aware of the variation formulas of geometric quantities
under the equation ∂

∂tgij = hij , where h is some symmetric 2-tensor. These formulas
can be found in [1] pg. 68, [2] pg. 108 and [7] pg.20. Most of the equation above
follow from these results by applying h = −2Ric with some extra work. These
results can be found in [1] pg. 174-179, [2] pg. 108-113 and [7] pg.32-34. In
particular the proofs of the evolution equations for Rm, Ric and R are lengthy
and need some extra work. One has to apply the formula for commuting covariant
derivatives (which can be found in [2] pg. 14, [6] pg. 94) and afterwards use the
Bianchi identities. �
4.2. Evolution of the Derivatives of Curvature. We will look at the square
of the norm of the derivatives of the Riemann curvature, i.e. |∇kRm|2, where k
denotes the k-th iterated covariant derivative. The computations in this section
will be crucial for the next one. We will see in the next section that the Bernstein-
Bando-Shi estimates give us upper bounds for |∇kRm|2. In order to prove them
we should apply the maximum principle of Theorem 3.1 for the evolution equations
∂
∂t |∇kRm|2. Our aim is to prove the following proposition:

Proposition 4.3. The square of the norm of the k-th covariant derivative of the
Riemann curvature tensor satisfies the heat-type equation

∂

∂t
|∇kRm|2 = Δ|∇kRm|2 − 2|∇k+1Rm|2 +

k∑
j=0

∇jRm ∗ ∇k−jRm ∗ ∇kRm.
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Remark 4.4. We adopt the following convention: If A and B are two tensors on
a n-dimensional Riemannian manifold, we denote by A ∗ B any quantity obtained
from A ⊗ B by one or more of these operations: (1) summation over pairs of
matching upper nad lower indices, (2) contraction on upper indices with respect to
the metric, (3) contraction on lower indices with respect to the metric inverse and
(4) multiplication by constants depending only on n and the ranks of A and B. We
also denote by A∗k any k-fold product A ∗ ... ∗A.

The proof of the previous proposition is given in [1] Chapter 7.2 and [7] Chapter
3.3 as a part of the proof of the Bernsten-Bando-Shi estimates. We prove it in this
survey sepperately as suggested in [6]. In order to give the proof of the proposition
we will need the following three lemmas.

Lemma 4.5. Let A, F be two tensors of the same type. If A satisfies

∂

∂t
A = ΔA+ F

under the Ricci flow, then

∂

∂t
|A|2 = Δ|A|2 − 2|∇A|2 + F ∗A+ Ric ∗A∗2.

Proof.

∂

∂t
gt(A,A) = 2gt(

∂

∂t
A,A) +

∂g(t)

∂t
(A,A)

= 2gt(ΔA+ F,A) + Ric ∗A∗2

= Δ|A|2 − 2|∇A|2 + F ∗A+Ric ∗A∗2.

We have used the identity

Δ|A|2 = 2〈ΔA,A〉+ 2|∇A|2.
�

Lemma 4.6. Let A, F be two tensors of the same type. If A satisfies

∂

∂t
A = ΔA+ F

under the Ricci flow, then

∂

∂t
∇A = Δ(∇A) +∇F + Rm ∗ ∇A+∇Ric ∗A.

Proof. ∇A can be written as

∇A = ∂A+ f(Γ, A),

where f(Γ, A) is some expression of the form Γ ∗ A. ([2] pg. 8, [6] pg. 11 give the
coordinate expression of ∇A for a tensor field A). Further more by Lemma 4.2, (2)

∂tΓ = (g−1) ∗ ∇Ric.

Now

∂t∇A = ∂t∂A+ ∂tf(Γ, A)

= ∂∂tA+ f(Γ, ∂tA) + f(∂tΓ, A) (by the product rule)

= ∇(∂tA) + f(g−1 ∗ ∇Ric, A) (because ∂tA is a tensor of the same type as A)

= ∇(ΔA+ F ) +∇Ric ∗A
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= (Δ∇A+Rm ∗ ∇A+∇Ric ∗A) +∇F +∇Ric ∗A
= Δ∇A+∇F +Rm ∗ ∇A+∇Ric ∗A.

We used the formula

[∇,Δ]A := ∇ΔA−Δ∇A = Rm ∗ ∇A+∇Ric ∗A,
which folows from the formula for commuting covariant derivatives (which can be
found in [2] pg. 14, [6] pg. 94) followed by the second Bianchi identity (more details
in [2] pg. 227). �

Observe that the formula for the evolution of the Riemann curvature tensor in
Lemma 4.2, (3) can be written as

∂

∂t
Rm = ΔRm+Rm∗2. (4.1)

Lemma 4.7. We have the following evolution equation under the Ricci flow:

∂

∂t
∇kRm = Δ∇kRm+

k∑
j=0

∇jRm ∗ ∇k−jRm.

Proof. The proof uses induction. The case k = 0 corresponds to the evolution
equation given by (4.1). We assume that it holds for k and we apply the previous
Lemma for A = ∇kRm and

F =
k∑

j=0

∇jRm ∗ ∇k−jRm.

The statement of the Lemma is straightforward if we observe that all of the reaction
terms on the RHS are of the form ∇iRm ∗ ∇jRm, where i+ j = k + 1. �

We are now in position to prove Proposition 4.3.

Proof. We simply apply the result of the previous Lemma to the first Lemma. Then
the statement of the Proposition is straightforward if we observe that all the terms
on the LHS other than the first two are of the form ∇iRm ∗ ∇jRm ∗ ∇kRm where
i+ j = k. �
4.3. The Global Derivative Estimates. The Global Derivative Estimates, known
also as Bernstein-Bando-Shi Estimates will be obtained by applying the maximum
principle of Theorem 3.1 to the evolution equations derived in Proposition 4.3. In
this way we will obtain bounds on the derivatives of the curvature. However there
are some problems when we try to apply the maximum principle to the evolution
equation of the previous chapter. The first problem is that we cannot guarantee any
initial conditions on the derivatives of the curvature if we are only given bounds
on the curvature. The second problem is that the evolution equation has some
terms in it, which we are not sure how to control. The statement and the proof
of the Bernstein-Bando-Shi estimates can be found in [1] Chapters 7.1 and 7.2, [7]
Chapter 3.3 and [6] Chapter 6.3. We will demonstrate here an outline of the proof.

Theorem 4.8 (The Bernstein-Bando-Shi Estimates). Let Mn be a closed manifold
and g(t) a smooth solution of the Ricci flow. Then for each α > 0 and m ∈ N, there
exists a constant Cm depending only on m, n and max{α, 1} such that if

|Rm(x, t)|g(x,t) ≤ K, for all t ∈ [0,
α

K
],
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then

|∇mRm(x, t)|g(x,t) ≤
CmK

tm/2
, for all t ∈ (0,

α

K
].

Proof. We will demonstrate an outline of the proof. The result can be obtained by
induction on m.

• Observe that for m = 0 the result is truy by hypethesis, with C0 = 1.
Assume that it holds for p ≤ m− 1.

• By the result of Proposition 4.3 and the inductive hypothesis we can show
that

∂

∂t
|∇mRm|2 ≤ Δ|∇mRm|2 − 2|∇m+1Rm|2 + C̄mK

(
|∇mRm|2 + K2

tm

)
for t ∈ (0, α

K ], where C̄
′
m is a constant depending only on m and n.

• In order to get the desired bound we are seeking for an upper bound on
tm|∇mRm|2. At t = 0 this quantity equals zero, so it does have an upper
bound for t = 0. This resolves the first problem. The evolution equation
in this case is given by

∂

∂t
(tm|∇mRm|2) ≤ Δ|tm∇mRm|2−2tm|∇m+1Rm|2+(C̄mKt+m)tm−1|∇mRm|2+C̄mK3.

In order to apply the maximum principle of Theorem 3.1 and get an upper
bound, we need to show that the reaction terms in the evolution equation
cause tm|∇mRm|2 to decrease. Unfortunately the reaction terms (i.e. the
last two terms in the evolution equation above) are not negative. This is
the second problem.

• To fix this problem the proof becomes technical. The idea is that we make
use of the term −2|∇k+1Rm|2 in the evolution equation of Proposition 4.3.
By adding the right amount of tm−1|∇m−1Rm|2 (which we know by the
inductive hypothesis is bounded above by a constant) we can cancel off
the unruly reactionary terms involving tm|∇mRm|2. In so doing we will
introduce new unruly terms in tm−1|∇m−1Rm|2, so we will need to add the
right amount of the next derivative down and so on. We define

G := tm|∇mRm|2 +
m−1∑
j=0

αmjt
j |∇jRm|2.

• One can show that
∂

∂t
G ≤ ΔG+BmK3,

for Bm := C̄m +
∑m−1

j=0 αmjDj , where Dj are numbers depending only on
j, n for 1 ≤ j ≤ m− 1.

• The reaction term is simply a constant, so it gives linear growth at worst.
At t = 0, G = αm0|Rm|2 ≤ αm0K

2. Now by applying the maximum
principle of Theorem 3.1 we obtain

G ≤ αm0K
2 +BmK3t ≤ (αm0 +Bmα)K2 := C2

mK2,

for t ∈ [0, α
K ), where Cm is a constant depending only on m, n and

max{α, 1}. Finally

|∇mRm| ≤
√

G

tm
≤ CmK

tm/2
,
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for t ∈ (0, α
K ].

�
4.4. Curvature Blows-up at Finite-time Singularities. We are going to com-
bine the short time existence result for the Ricci flow (Theorem 2.11) and the global
derivative estimates of Bernstein-Bando-Shi (Theorem 4.8) in order show that if the
Ricci flow becomes singular, then the curvature blows-up as we approach the sin-
gular time. In particular the theorem we aim to demonstrate in this section is the
following:

Theorem 4.9 (Curvature blows-up at a singularity). If g0 is a smooth metric on
a compact manifold M , the Ricci flow with g(0) = g0 has a unique solution g(t) on
a maximal time interval t ∈ [0, T ). Moreover, if T < ∞, then

lim
t→T

(
sup
x∈M

|Rm(x, t)|
)
= ∞.

Before we are in position to prove this theorem, we shall need some key results.
The first one is the following:

Lemma 4.10. Let M be a closed manifold and g(t) with t ∈ [0, T ) a one-parameter
family of metrics on M depending smoothly on space and time. If there exists a
constant C < ∞ such that ∫ T

0

∣∣∣∣ ∂∂tg(t, x)
∣∣∣∣
g(t)

dt ≤ C,

for all x ∈ M , then the metric g(t) converges uniformly to a continuous metric
g(T ) such that for all x ∈ M

e−Cg(x, 0) ≤ g(x, T ) ≤ eCg(x, 0).

Proof. The proof can be found in [1] pg. 203. �
Remark 4.11. Note that the result of the previous Lemma means that g(x, T ) is
uniformly equivalent to g(x, 0).

Corollary 4.12. Let (M, g(t)) be a solution of the Ricci flow on a closed manifold.
If

|Rm(x, t)|g ≤ K

for all x ∈ M and t ∈ [0, T ) (with T < ∞), then the metric g(t) converges uniformly
to a continuous metric g(T ) such that for all x ∈ M

e−Cg(x, 0) ≤ g(x, T ) ≤ eCg(x, 0).

Proof. A bound on |Rm(x, t)|g implies one on |Ric(x, t)|g and hence on
∣∣ ∂
∂tg(t, x)

∣∣
g(t)

by the Ricci flow equation. The integral of the previous lemma is then an integral
of a bounded quantity over a finite interval and hence is bounded. Hence the lemma
applies. �

The strategy for proving Theorem 4.9 will be the following: If we assume that
|Rm(x, t)|g ≤ K and show that the metric converges uniformly to a smooth metric
g(T ), then we can apply Theorem 2.11 with initial metric g(T ) to extend the solu-
tion past T . This would contradict the choice of T as the maximal time such that
the Ricci flow exists on [0, T ). Let’s see what we have so far. We have shown that
there exists a limit metric g(T ) and it is continuous. We still need to prove that
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this metric is smooth. To do this, we need to make sure that the spatial derivatives
of g near the limit time T are not blowing-up, i.e. that they are bounded.

The first thing we will do, is to bound the derivatives of curvature via the
Bernstein-Bando-Shi estimates, which give bounds on the derivatives of the curva-
ture under assumptions of bounded curvature. Recall that the Bernstein-Bando-Shi
estimates give us no control for the derivatives of the curvature at t = 0. However
this is no problem for us, because we are interested in derivative estimates near
t = T .

Corollary 4.13 (of Proposition 4.3). Let (Mn, g(t)) be a solution of the Ricci flow
on a compact manifold. If there exist β,K > 0, such that

|Rm(x, t)|g(t) ≤ K,

for all t ∈ [0, T ], where T > β/K, then for each m ∈ N there exists a constant Bm

depending only on m,n and min{β, 1} such that

|∇mRm(x, t)|g(t) ≤ BmK1+m
2 ,

for all t ∈
[
min{β,1}

K , T
]
.

Proof. The proof uses the Bernstein-Bando-Shi estimates and can be found in [1]
pg. 202. �

We have now a bound for the derivatives of the curvature near t = T . We would
like to use it in order to bound the derivatives of the metric near t = T (we need
this in order to show uniform convergence of g(T ) in any Ck norm).

Corollary 4.14. Let (Mn, g(t)) be a solution of the Ricci flow on a closed manifold
and let (xi), i = 1, ..., n be a local coordinate system defined on some coordinate
chart U ⊂ M . If there exists K > 0 such that

|Rm(x, t)|g(t) ≤ K,

for all t ∈ [0, T ), then for each m ∈ N there exist constants Cm, C
′
m depending only

on the chosen coordinate chart such that

|∂mg(x, t)| ≤ Cm

and
|∂mRic(x, t)| ≤ C

′
m,

for all (x, t) ∈ U × [0, T ), where the norms are taken with respect to the Euclidean
metric in the coordinate system (xi).

Remark 4.15. The previous Corollary is a reformulation of the argument in [1]
pg. 203. This formulation is suggested in [6] pg. 54. Note that by ∂mg we mean the
(m+2, 0)-tensor field, defined only in the coordinate chart U , which has coordinates
∂i1 ...∂imgpq with respect to the coordinate system (xi). The Euclidean metric, which
is also defined only in U , is the metric which has coordinates δij with respect to the
coordinate system (xi).

Proof. The proof is very technical and lengthy. It uses the Corollary 4.13 and can
be found in [6] pg. 54 and [1] pg. 203. �

Corollary 4.16. The metric g(T ) of Corollary 4.12 is smooth and the metrics g(t)
converge uniformly in every Ck norm to g(T ) as t → T .
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Proof. This is again a quite technical proof. The convergence part of the Corollary
is proved by applying Corollary 4.14. The proof can be found in [6] pg. 55. �

We are now in position to prove Theorem 4.9.

Proof. We assume for a contradiction that |Rm(x, t)|g ≤ K. By the Corollaries
above we know that the metrics g(t) converge uniformly in any Ck norm to a
smooth metric g(T ). Because g(T ) is smooth it is possible to find a solution to the
Ricci flow with initial metric g(T ) by the result of Theorem 2.11. Thus our solution
to the Ricci flow can be extended past t = T . This extension is smooth, because all
spatial derivatives are continuous at t = T (by the convergence of g(t) in any Ck

norm). It follows that all space-time derivatives are continuous at t = T because the
Ricci flow equation allows us to write time derivatives of quantities related to the
metric in therms of space derivatives of those quantities and the space-derivatives
have been shown to be continuous. Therefore, the solution can be extended past
time t = T , so the time T could not have been maximal. This is a contadiction, �

5. Three-manifolds with positive Ricci curvature

The aim of this chapter is to demonstrate the following Theorem proved by
Hamilton in [4].

Theorem 5.1. Let M3 be a closed manifold, which admits a smooth Riemannian
metric with strictly positive Ricci curvature. Then M3 also admits a smooth metric
of constant positive curvature.

Remark 5.2. In particular if M3 is simply connected, then M3 is diffeomorphic
to S3.

5.1. Finite-time Blow-up. The short time existence and uniqueness result of
Theorem 2.11 guarantees that the Ricci flow has a unique solution on a maximal
time interval [0, T ). We will show, that if the initial Ricci curvature is strictly
positive, then T < ∞. The results of this Chapter can be found in [1] Chapter 6.8.

Theorem 5.3. Let (M, g(t)) be a solution of the Ricci flow on a compact manifold,
defined for t ∈ [0, T ). If the metric g0 = g(0) has strictly positive scalar curvature
(in particular, if it has strictly positive Ricci curvature), then g(t) becomes singular
in finite time, i.e. T < ∞.

Proof. M is compact and at t = 0 the scalar curvature is strictly positive, thus it is
bounded from below by some ρ > 0. By using the evolution equation for the scalar
curvature we obtain

∂

∂t
R = ΔR+ 2|Ric|2 ≥ ΔR+

2

n
R2.

We now apply the maximum principle of Theorem 3.1. The solution of the ODE

dφ

dt
=

2

n
φ2

φ(0) = p

is φ(t) = 1
1
ρ− 2t

n

. Thus by Theorem 3.1 R(x, t) ≥ φ(t). But φ(t) clearly diverges to

+∞ in finite time, hence R(x, t) becomes singular and so the solution g(t) becomes
singular in finite time. �
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Corollary 5.4. The curvature blows-up as t → T :

lim
t→T

(
sup

x∈M3

|Rm(x, t)|
)
= ∞

lim
t→T

(
sup

x∈M3

|Ric(x, t)|
)
= ∞.

Proof. The previous Theorem states that the maximal time T < ∞. Thus by
Theorem 4.9 the curvature blows-up as we approach the singular time T . Since
|Rm| ≤ C|Ric| in dimension n = 3 the second statement follows as well. �

5.2. The Uhlenbeck Trick. We would like to apply the maximum principle for
vector bundles (Theorem 3.2) to the Riemann curvature tensor. Recall that by
Lemma 4.2, (3) the evolution of the Riemann curvature tensor under the Ricci flow
is given by:

∂

∂t
Rijkl = ΔRijkl + 2(Bijkl −Bijlk −Biljk)

−(Rp
iRpjkl +Rp

jRipkl +Rp
kRijpl +Rp

l Rijkp),

where Bijkl = −Rq
pijR

p
qlk. The naive approach would be to apply Theorem 3.2 to

Rijkl by interpreting it as a section of the vector bundle of (4, 0)-tensors. Unfortu-
nately, the problems in that case would be two. The first one is that the reaction
terms of the expression above are not useful when we try to solve the associated
ODE in order to apply Theorem 3.2. The second problem is that the maximum
principle for vector bundles cannot deal with bundle metrics that depend on time.
In this chapter we examine a trick attributed to Karen Uhlenbeck ([5], pg. 155)
that allows one to simplify the above equation by removing the last collection of
terms with a ”change of variables”. This Chapter is based on [1] Chapters 6.2-6.4.

Let (M, g(t)), t ∈ [0, T ) be a solution to the Ricci flow with g(0) = g0. Let V
be vector bundle over M isomorphic to TM and let ι0 : V → TM be a bundle
isomorphism. In other words the restrictions (ι0)x : Vx → TxM are vector space
isomorphisms depending smoothly on x ∈ M . Then we define a metric h0 on V by

h0 := ι∗0(g0)

and we automatically obtain a bundle isometry

ι0 : (V, h0) → (TM, g0).

Corresponding to the evolution equation of the metric g(t) by the Ricci flow, we
evolve the isometry ι(t) by

∂

∂t
ι = Ric ◦ ι (5.1)

ι(0) = ι0.

Here we regard the Ricci tensor Ric = Ric(g(t)) as a (1, 1)-tensor. For each x ∈ M
we obtain a system of linear ODEs. Hence a unique solution exists for t ∈ [0, T )
(namely for as long as the solution g(t) of the Ricci flow exists). Clearly ι(t) remains
a smooth bundle isomorphism for all t ∈ [0, T ). But more is true.

Lemma 5.5. Define h(t) := ι(t)∗g(t). Then the bundle maps

ι(t) : (V, h(t)) → (TM, g(t))

remain isometries.
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Proof. ι(t) : (V, h(t)) → (TM, g(t)) is an isometry as long as h(t) = ι(t)∗g(t).
Because h is constant and ι0 is an isometry by definition, it suffices to show that
ι(t)∗g(t) does not change in time. Let x ∈ M and X,Y ∈ Vx. Then

∂

∂t
h(X,Y ) =

∂

∂t

(
(ι∗g)(X,Y )

)
=

∂

∂t

(
g(ι(X), ι(Y ))

)
=

( ∂

∂t
g
)
(ι(X), ι(Y )) + g

( ∂

∂t
ι(X), Y

)
+ g

(
X,

∂

∂t
ι(Y )

)
= −2Ric(ι(X), ι(Y )) + g(Ric(ι(X)), Y ) + g(X,Ric(ι(Y )))

= 0.

�

Therefore ι∗g(t) is independent of time t and so continues to equal the fixed
metric h0. Now we want to consider the pullback of Rm by ι. Let (ea)

n
a=1 be

a basis of sections of V restricted to an open set U ⊂ M Then the components
(Rabcd) of ι

∗Rm are
Rabcd = (ι∗Rm)(ea, eb, ec, ed).

Lemma 5.6. If g(t) is a solution of the Ricci flow and ι(t) a solution of (5.1),
then ι∗Rm evolves by

∂

∂t
Rabcd = ΔRabcd + 2(Babcd −Babdc +Bacbd −Badbc).

Proof. The proof can be found in [1] pg. 182. �

Recall that we can regard Rm as a bilinear form

R : Λ2TxM × Λ2TxM → R,

hence as a section of the bundle S2(Λ2T ∗M), such that

R(ei ∧ ej , ek ∧ el) = Rijkl.

If dimM = 3, then dim(Λ2TxM) = 3 and if {E1, E2, E3} is an orthonormal basis
for TxM then {E1 ∧E2, E1 ∧E3, E2 ∧E3} is an orthonormal basis for Λ2TxM . Of
course R can be represented by a symmetric 3×3 matrix, which can be diagonalized
with respect to an orthonormal basis. We would like to apply the vector bundle
maximum principle (Theorem 3.2) to R ∈ Γ(S2(Λ2T ∗M)). We must consider the
ODE corresponding to the PDE which describes the evolution of Rm of the previous
Lemma. This is

d

dt
Rabcd = 2(Babcd(R)−Babdc(R) +Bacbd(R)−Badbc(R)).

In dimension three this ODE has a particularly convenient form. If we choose a
basis so that R0 is diagonal with eigenvalues λ1 ≥ λ2 ≥ λ3, then the equation is
given by:

d

dt

⎡
⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ =

⎡
⎣λ2

1 + λ2λ3 0 0
0 λ2

2 + λ3λ1 0
0 0 λ2

3 + λ1λ2

⎤
⎦ .

In particular R(t) will remain diagonal, which is not in general true in higher
dimensions. A more explicit description can be found in [1] Chapter 6.3, 6.4.
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So in dimension three λ1, λ2 and λ3 completely describe R and we may represent
R as a point (λ1, λ2, λ3) moving in R3 according to the ODE

d

dt

⎡
⎣λ1

λ2

λ3

⎤
⎦ =

⎡
⎣λ2

1 + λ2λ3

λ2
2 + λ3λ1

λ2
3 + λ1λ2

⎤
⎦ . (5.2)

From the standard Riemannian geometry theory (you can look up [6] pg. 18)
observe that the initial value for λ also tells us about the initial Ricci and scalar
curvature, which means

Ric =
1

2

⎡
⎣λ2 + λ3 0 0

0 λ3 + λ1 0
0 0 λ1 + λ2

⎤
⎦ (5.3)

and

R = λ1 + λ2 + λ3. (5.4)

Remark 5.7. Observe that λ3 = two times the sectional curvature of E1 ∧ E2 =
Rm(E1, E2, E1, E2) = R(E1 ∧ E2, E1 ∧ E2).

5.3. The Local Pinching Estimates. We present the pinching results which
are true for 3-manifolds with positive Ricci curvature. As we will see, the first
estimate proves that curvature pinching in preserved, whereas the second shows
that it improves, hence that a solution to the Ricci flow on a 3-manifold with
positive Ricci curvature in nearly Einstein at any point where its scalar curvature
is large. These are pointwise estimates. Later we will demonstrate the techniques
for comparing curvatures at different points of a solution. This chapter is based on
[1] Chapter 6.5.

Lemma 5.8 (Ricci Pinching is Preserved). Let (M3, g(t)) be a solution of the Ricci
flow on a closed 3-manifold such that the initial metric g0 has strictly positive Ricci
curvature. If there exists constants C < ∞ and ε > 0 such that

λ1

λ3 + λ2
≤ C

and

Ric ≥ εg

at t = 0, then these inequalities persist as long as the solution exists.

Proof. The proof can be found in [1] pg. 189 and 190. We present here an outline:

• C, ε exist at t = 0 by the compactness of M : λ1

λ3+λ2
is a continuous, positive

function at t = 0, thus there exists an upper bound for it. The eigenvalues
of Ric at t = 0 are strictly positive, so they have an upper bound. It suffices
to show that these conditions are preserved under the Ricci flow.

• We apply the maximum principle for vector bundles (Theorem 3.2) on
E = S2(Λ2T ∗M) with

K = {Q ∈ E : λ1(Q)− C(λ3(Q) + λ2(Q)) ≤ 0 and λ1 + λ3 ≥ 2ε}.
• We show that K is invariant under parallel translation and convex in each

fiber.
• Show that the solution of the associated ODE stays inK. That is if λ1

λ3+λ2
≤

C and λ2 + λ3 ≥ 2ε initially, then this condition remains true under (5.2).
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• Because the assumptions of Theorem 3.2 are fulfilled, the PDE stays in K,
i.e. the conditions are preserved.

�
Corollary 5.9. Let (M3, g(t)) be a solution of the Ricci flow on a closed 3-manifold
such that the initial metric g0 has strictly positive Ricci curvature. Then the scalar
curvature blows-up as t → T . That is, if we define Rmax(t) := supx∈M R(x, t), then

lim
t→T

Rmax(t) = ∞.

Proof. By the previous Lemma Ric remains strictly positive under the Ricci flow.
This means that if we diagonalize Ric with respect to some orthonormal basis with
eigenvalues a, b, c > 0, then

|Ric|2 = a2 + b2 + c2 < (a+ b+ c)2 = R2.

The results follows from Theorem 5.4.. �
Corollary 5.10. Let (M3, g(t)) be a solution of the Ricci flow on a closed 3-
manifold such that the initial metric g0 has strictly positive Ricci curvature. Then
these exists a constant β > 0 depending only on g0 such that at all points of M

Ric ≥ 2β2Rg.

Proof. We use the previous Lemma and the formulas (5.3) and (5.4).

Ric ≥ λ2 + λ3

2
g ≥ λ1

2C
g ≥ λ1 + λ2 + λ3

6C
g ≥ 1

6C
Rg.

�
Theorem 5.11 (Ricci Pinching is improved). Let (M3, g(t)) be a solution of the
Ricci flow on a closed 3-manifold such that the initial metric g0 has strictly positive
Ricci curvature. Then there exist positive constants δ < 1 and C depending only
on g0 such that

λ1 − λ3

R
≤ C

Rδ
.

Proof. The proof can be found in [1] pg. 190-192. We present here an outline:

• It suffices to show that

λ1 − λ3

λ2 + λ3
≤ Ĉ

(λ2 + λ3)δ
.

• By compactness given δ ∈ (0, 1) we can choose a Ĉ at t = 0, because
λ2 + λ3 > 0 by the Ric > 0 condition. We will show that this condition in
preserved under the Ricci flow.

• Apply the maximum principle of Theorem 3.2 on E = S2(Λ2T ∗M) with

K = {Q ∈ E : (λ1(Q)− λ3(Q))− Ĉ(λ2(Q)− λ3(Q))1−δ ≤ 0}.
• We show that K is invariant under parallel translation and convex in each

fiber.
• Show that the solution of the associated ODE stays in K by using equation
(5.2). In this part we also use equation 5.2 and Lemma 5.8.

• Because the assumptions of Theorem 3.2 are fulfilled, the PDE stays in K,
i.e. the conditions are preserved.

�
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The previous Theorem states the following: As t → T and the curvature blows-
up, the sectional curvatures get pinched together. Obviously λ1−λ3 is the greatest
difference between any two eigenvalues. Furthermore the left hand side is scale
invariant, so even if when we rescale the metric by some factor, this bound tells us
that the eigenvalues (i.e. the sectional curvatures) will be close together.

The previous Theorem is equivalent to the following Corollary, which was proved
in Hamilton’s original paper.

Corollary 5.12. Let (M3, g(t)) be a solution of the Ricci flow on a closed 3-
manifold such that the initial metric g0 has strictly positive Ricci curvature. Then

there exist positive constants B, δ̂ such that

|E|2
R2

≤ BR−δ̂,

where E is the traceless Ricci tensor Eij = Rij − 1
3Rg,

Proof. We present an outline of the proof:

• We compute the matrix for E by (5.3) and (5.4).

• We prove the result by applying the previous Theorem for δ̂ = 2δ.

�
The previous Corollary reflects the discussion in the beginning of the chapter.

|E|2 measures how far away the metric is from being an Einstein metric. Recall
that a metric is called Einstein if its traceless Ricci tensor is identically zero. When
|E|2 = 0 we have that Rij = Cgij , where C is a constant over the whole manifold.
In the 3-dimensional case if follows that the metric has constant sectional curvature.

5.4. The Global Curvature Estimates. In this chapter we obtain a gradient
estimate for the scalar curvature. This estimate is important because it enables
us to compare curvatures at different points, whereas the pinching estimate of the
previous chapter is a pointwise estimate which compares sectional curvatures at
the same point. We know that they pinch together if the scalar curvature blows-up
at that point, but we only know that the curvature explodes somewhere on our
manifold as we approach the singular time. This is not enough to conclude that
the sectional curvatures pinch together everywhere.

Recall formula |E|2
R2 ≤ B · R−δ̂ from Corollary 5.12. We know from the classical

Riemannian geometry theory, that if the metric is Einstein, i.e. E = 0, then the
scalar curvature is constant. So if we have a bound on |E|2 like the previous one
everywhere on the manifold, then the scalar curvature might be close to being
constant. So it is reasonable to expect that we will be able to obtain a bound on
|∇R| from our pinching result. A bound like this would allow us to compare values
of R at different points of the manifold. But we already know that R is blowing-up
somewhere on M , so we will be able to show that it is getting large everywhere and
hence the sectional curvatures are getting close together everywhere.

Our references are [1] Chapter 6.6, Chapter 6.8 and [6] Chapter 7.5.

Theorem 5.13. Let (M, g(t)) be a solution of the Ricci flow on a closed 3-manifold
with g(0) = g0. If Ric(g0) > 0, then there exist β̄, γ > 0 depending only on g0 such
that for any β ∈ [0, β̄] there exists C such that

|∇R|2
R3

≤ βR−γ + CR−2.
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Here, the left-hand side is a scale invariant quantity, while the right-hand side is
small when the scalar curvature is large.

Proof. The proof can be found in [1] pg. 194. The proof uses the maximum principle

of Theorem 3.1 for the evolution equation of |∇R|2
R . �

We apply now the gradient estimate and the Bonnet-Myers Theorem to show
that the global pinching of the curvature tends to 1.

Theorem 5.14. Let (M3, g(t)) be a solution of the Ricci flow on a closed 3-
manifold with g(0) = g0. If Ric(g0) > 0, then there exist constants C, γ > 0
depending only on g0 such that

Rmin

Rmax
≥ 1− CR−γ

max.

Note that this means Rmin/Rmax → 1 as t → T , because Rmax → ∞ as t → T by
Corollary 5.9. It follows that R → ∞ uniformly as t → T .

Proof. The proof can be found in [1] pg. 210.We present an outline:

• The main tool is the previous Theorem, which allows us to compare the
curvature at different points of M .

• By Corollary 4.9 Rmax
t→T−−−→ ∞. Thus for t sufficiently close to T the

previous theorem tells us, that there exist positive constants A and α, such

that |∇R| ≤ AR
3/2−α
max . Thus for t sufficiently close to T we have

|R(x)−R(y)| ≤
∫
γ

|∇R|ds ≤ AR3/2−α
max d(x, y),

where γ is the minimizing geodesic connecting x and y.
• Let us choose x(t) such that Rmax(t) = R(x, t) (we can do this as M
is compact) and define L(t) := 1

ε
√

Rmax(t)
, where ε > 0. Then for all

y ∈ B(x(t), L(t)) we have

R(y) ≥ R(x)−AR3/2−α
max L ≥ Rmax(1−

A

ε
R−α

max).

Recall that Rmax → ∞ as t → T . Therefore given δ > 0 for t sufficiently
close to T we have

R(y) ≥ (1− δ)Rmax,

for all y ∈ B(x(t), L(t)).

• By using the Bonnet-Myers Theorem we show that B
(
x(t), 1

ε
√

Rmax(t)

)
is

all of M .

�
Now because R → ∞ uniformly as t → T the curvature should be getting

uniformly pinched.

Corollary 5.15. Let (M3, g(t)) be a solution of the Ricci flow on a closed 3-
manifold with g(0) = g0 with Ric(g0) > 0. Furthermore let λ1(x, t) ≥ λ2(x, t) ≥
λ3(x, t) denote the eigenvalues of R at (x, t). Then for any ε ∈ (0, 1) there exists
Tε ∈ [0, T ) such that

min
x∈M

λ3(x, t) ≥ (1− ε)max
y∈M

λ2(y, t) > 0
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for all t ∈ [Tε, T ). This means that the metric will eventually attain positive sec-
tional curvature everywhere.

Proof. The proof can be found in [1] pg. 210. We present an outline:

• We apply Theorem 5.11:

λ3 ≥ λ1 − Ĉ(λ1 + λ2 + λ3)
1−δ ≥ λ1(1− 3ĈR−δ)

to each point x ∈ M .
• By the previous Theorem R → ∞ uniformly as t → T . Thus if we are given
η > 0 for some time t close enough to T , we can show that

λ3(x, t) ≥ (1− η)3λ1(y, t).

• The result follows by taking the supremum over all x, y ∈ M .

�
5.5. The Normalized Ricci Flow. Let’s sum up what we have so far. The Ricci
flow becomes singular is some finite time T . As we approach the singular time T
the curvature blows-up and the sectional curvatures get globally pinched together
as the curvature blows up. We want a metric of constant sectional curvature on M ,
so we should take the limit of the flow as t → T . But the manifold is shrinking to a
point at time T . We should consider of rescaling so that the volume of M remains
constant (i.e. the volume of M with respect to g̃ is constant).

In order to define our new, normalized flow we define dilating factors ψ(t) > 0
so that the metrics g̃(t) = ψ(t) · g(t)with ψ(0) = 1 have constant volume. The
resulting evolution equation is

∂

∂t
g̃ = −2R̃ic +

2r̃

n
g,

where R̃ic denotes the Ricci curvature of g̃ and r̃ :=
∫
M

R̃dμ∫
M

dμ
the average scalar

curvature of g̃. Furthermore τ =
∫ t

0
ψ(u)du corresponds to a rescaling of time. Note

that n is the dimension of the manifold. This is the equation of the normalized Ricci
flow and differs from the unnormalized Ricci flow by a rescaling of space and time.
Now the metric has constant volume and the problem of the manifold shrinking
to a point as t → T is eliminated. Because we have only rescaled the Ricci flow
solution, the results that we have proven so far for the unnormalized Ricci flow can
be translated to the normalized Ricci flow. Further details on the construction of
the normalized Ricci flow equation can be found in [1] Chapter 6.9. Now the issue
of the curvature exploding is fixed by the following Lemma:

Lemma 5.16. For the normalized Ricci flow on a closed 3-manifold with ini-
tially strictly positive Ricci curvature there exists some positive constant C, so that
R̃max < C.

Proof. The proof can be found in [1] Chapter 6.9. �
We will now mention a very important result, which states that the normalized

flow exists for all time. In other words our rescaling of space and time has in fact
taken us to an infinite time interval,

Theorem 5.17. Let (M, g(t)) be a solution of the unnormalized Ricci flow on a
closed 3-manifold with initially strictly positive Ricci curvature. Then the corre-
sponding normalized solution exists for all time, i.e. T = ∞.
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Proof. The proof can be found in [1] Chapter 6.9. We present an outline:

• We show that ∫ T

0

Rmax(t)dt = ∞,

where Rmax(t) is the maximal scalar curvature of the metric g(t) and [0, T )
is the maximal time interval on which the unnormalized flow exists.

• The corresponding integral for the normalized flow will be the same:∫ T̃

0

R̃max(τ)dτ =

∫ T

0

r(t)dt = ∞.

• But the integrand is bounded by the previous Lemma. So T̃ = ∞.

�

5.6. Exponential Convergence of the Normalized Flow. In this chapter we
follow [6] Chapter 7.7.

We will prove that the normalized Ricci flow converges as τ → ∞ to a smooth
metric g̃∞ of constant positive sectional curvature. We will use the following nota-
tion:

g̃∞ := lim
τ→∞ g̃(τ).

In what follows Lemma 4.10 will play a crucial role. In order to show that g̃∞
exists and is continuous, we have to show that there exists some C < ∞ such that∫ ∞

0

∣∣∣∣ ∂∂τ g̃
∣∣∣∣
g̃

dτ < C.

If we use the normalized Ricci flow equation, then it is equivalent to showing that
the integral ∫ ∞

0

∣∣∣∣R̃ic− r̃

3
g̃

∣∣∣∣
g̃

dτ (5.5)

is bounded. The easiest way to do it, is to show that the integrand is bounded by
a decaying exponential.

The next one is the key theorem in order to prove that the integral (5.5) is
bounded.

Theorem 5.18. If (M, g̃(τ)) is a solution of the normalized Ricci flow on a closed
3-manifold with initially strictly positive Ricci curvature, then there exist constants
C, δ > 0 such that

|Ẽ| ≤ Ce−δτ

Proof. The proof can be found in [6] Chapter 7.8. �

To apply Lemma 4.10 we must prove an exponential bound on
∣∣∣R̃ic− r̃

3 g̃
∣∣∣. The

previous Theorem gives us a bound on |Ẽ| =
∣∣∣R̃ic− R̃

3 g̃
∣∣∣, which is almost what we

want. We just need to go from R̃ to r̃. So it suffices to show that the difference
|R̃− r̃| is exponentially bounded. We will actually prove something a bit stronger:

Lemma 5.19. There exist constants C, δ > 0 such that

R̃max − R̃min < Ce−δτ .

Proof. The proof can be found in [6] Chapter 7.8. �
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This allows us to prove the following:

Theorem 5.20. Let (M, g̃(τ)) be a solution of the normalized Ricci flow on a closed
3-manifold with initially strictly positive Ricci curvature. Then g̃(τ) exists for all
τ ∈ [0,∞) and converges uniformly as τ → ∞ to a continuous metric g̃∞.

Proof. By the theorem and lemma above we have∫ ∞

0

∣∣∣∣∂g̃∂τ
∣∣∣∣ dτ =

∫ ∞

0

∣∣∣∣R̃ic− r̃

3
g̃

∣∣∣∣ dτ
≤

∣∣∣∣∣R̃ic− R̃

3
g̃

∣∣∣∣∣+
∣∣∣∣∣ R̃− r̃

3
g̃

∣∣∣∣∣ dτ
<

∫ ∞

0

Ce−δτdτ < ∞,

where we have amalgamated the two exponential bounds into one. It follows by
Lemma 4.10 that g̃(τ) converges uniformly to a continuous metric g̃∞ as τ → ∞. �

But we want our limit metric g̃∞ to be smooth. So the next thing to prove is
that convergence is smooth. Another important reason that we require smoothness
is that it will allow us to conclude that the curvature pinching results we have
proven for the flow lead to similar results for the limit metric and hence that the
limit metric has constant curvature.

Theorem 5.21. The limit metric g̃∞ of the previous Theorem is smooth and the

convergence g̃(τ)
τ→∞−−−−→ g̃∞ in uniform in every Ck norm.

Proof. The proof can be found in [6] Chapter 7.8. �

Finally we are in position to prove Theorem 5.1.

Theorem 5.22. The limit metric g̃∞ is a smooth metric with constant positive
sectional curvature.

Proof. By the previous Theorem g̃(τ) converges to g̃∞ in the C0, C1 and C2 norms.
Because all the curvature quantities are combinations of 0-th order, 1-st order and
2-nd order derivatives of the metric, this means that we can take the limit to show
that the traceless Ricci tensor of g̃∞ vanishes:

|Ẽ∞| = lim
τ→∞ |Ẽ(τ)| ≤ lim

τ→∞Ce−δτ = 0.

Therefore g̃∞ is Einstein and thus has constant (positive) sectional curvature. �
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Abstract. n this master thesis we study linear maps, which are chaotic, ac-

cording to the definition that was suggested by Devaney in 1986: an operator is
chaotic if it has an element with dense orbit and if it has a dense set of periodic

points. We mention three classical examples of linear operators - Birkhoff ’s
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ward shift operator - and we present the proof that these operators are chaotic.
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HIERARCHY AND EXPANSIVENESS IN 2-DIMENSIONAL

SUBSHIFTS OF FINITE TYPE

CHARALAMPOS ZINOVIADIS

Abstract. Using a deterministic version of the self-similar method for con-
structing 2-dimensional subshifts of finite type (SFTs), we construct aperiodic

2D SFTs with a unique direction of non-expansiveness and prove that the

emptiness problem of SFTs is undecidable even in this restricted case. As an
additional application of our method, we characterize the sets of directions

that can be the set of non-expansive directions of 2D SFTs.

1. Alphabets and Configurations

• Alphabet: A finite set of letters A.
• (dD) Configuration: A mapping c : Zd → A.

• (dD) Full shift: The set of all configurations AZ
d

.
• Compact topology for the full shift.
• (ci)i∈N converges iff (ci(�x))i∈N is eventually constant for all �x ∈ Zd.

• Shift action: σ
n(c)(�x) = c(�x+ �n), ∀c ∈ AZ
d

, ∀�x ∈ Zd.

2. Subshifts of Finite Type

• Pattern: A partial assignment p : D → A, where D ⊆ Zd is finite.

• Subshift: A subset XF ⊆ AZ
d

defined by the set of forbidden patterns F .

• XF = {c ∈ AZ
d

: σ
n(c)|D 	= p}, for all �n ∈ Zd and all patterns p : D → A
in F .

• Subshifts are the closed and σ-invariant subsets of AZ
d

.
• Subshift of Finite Type (SFT): A subshift defined by a finite set of

forbidden patterns.

3. Aperiodic SFTs

• Periodic configuration c: ∃�n ∈ Zd such that c(�x + �n) = c(�x), ∀�x ∈
Zd ⇐⇒ σ
n(c) = c.

• Aperiodic SFT: Non-empty, but does not contain a periodic configura-
tion.

• A non-empty 1D SFT always contains a periodic configuration. No aperi-
odic 1D SFT.
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Key words and phrases. symbolic dynamics, expansive subdynamics, tiling problem,
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• What happens in higher dimensions?

Theorem 3.1 (Berger 1966, Robinson 1971, Kari-Culik 1995, Jeandel-Rao 2015).
There exists an aperiodic 2D SFT.

4. Undecidability of the Emptiness Problem

The Emptiness Problem Given a dD finite set of forbidden patterns F , is XF 	=
∅?

• The Emptiness Problem is decidable for d = 1.
• Graph representation of 1D SFTs.
• What happens in higher dimensions?

Theorem 4.1 (Berger 1966, Robinson 1971, Kari 2008). The Emptiness Problem
is undecidable for d = 2.

5. Expansive and Non-Expansive Directions

• X is a 2D subshift.
• l ∈ R � {∞} is a slope.
• � ⊂ R2 is the corresponding line through the origin.
• �r ⊂ R2 is the corresponding stripe of width 2r.

Definition l is expansive for X if there exists r > 0 such that every x ∈ X is
determined by x�r .

• A 2D configuration encoded in a 1D strip.
• A subshift can have many expansive directions.
• N (X) denotes the set of non-expansive directions of X.

6. Extremely Expansive Subshifts

Theorem 6.1 (Boyle-Lind 1997). N (X) 	= ∅ if and only if X is infinite.

• X finite ⇒ N (X) = ∅.
• X infinite ⇒ N (X) 	= ∅.
• Extremely expansive: |N (X)| = 1.
• Most restricted non-trivial case.
• Being extremely expansive is a strong geometric restriction.
• Reducing a 2D object to 1D as much as possible.
• Are extremely expansive 2D SFTs closer to the 1D or to the 2D case?

7. Aperiodicity and Undecidabilty for Extremely Expansive SFTs

Theorem 7.1 (Guillon-Z. 2016). There exists an aperiodic extremely expansive
2D SFT.

Theorem 7.2 (Guillon-Z. 2016). The Emptiness Problem is undecidable for ex-
tremely expansive 2D SFTs.

• Previously, known for |N (X)| = 2 (Kari-Papasoglou 1999, Lukkarila 2008).
However, a new method is needed to give extremely expansive SFTs.

Structure of N (X) for general subshifts Question What can N (X) ⊆ R � {∞}
look like?
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Theorem 7.3 (Boyle-Lind 1997). N (X) is closed under the one-point compactifi-
cation of R � {∞}.
Theorem 7.4 (Hochman 2011). For every closed set of directions N0, there exists
a subshift X such that N (X) = N0.

Structure of N (X) for 2D SFTs

Theorem 7.5. N (X) is effectively closed under the one-point compactification of
R � {∞}.

• There exists an algorithm that discards directions not in N (X).
• Additional computational theoretic restriction.
• As happens usually in 2D SFTs, necessary computational restriction turns
out to be also sufficient.

Theorem 7.6 (Guillon-Z. 2016). For every effectively closed set of directions N0,
there exists a 2D SFT X such that N (X) = N0.

A few words about the construction technique

• Hierarchical (or fixed-point, or self-similar) construction.
• Introduced by Gacs to solve the Positive Rates Conjecture.
• Used in an SFT context by Durand-Romashchenko-Shen.
• We use a vertically expansive version of their method.
• For the last result, we modify the construction of Hochman.
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